Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul 15;73(2):260-9.
doi: 10.1002/jnr.10648.

Pyruvate protection against beta-amyloid-induced neuronal death: role of mitochondrial redox state

Affiliations

Pyruvate protection against beta-amyloid-induced neuronal death: role of mitochondrial redox state

Gema Alvarez et al. J Neurosci Res. .

Abstract

The mechanism by which beta-amyloid protein (A beta) causes degeneration in cultured neurons is not completely understood, but several lines of evidence suggest that A beta-mediated neuronal death is associated with an enhanced production of reactive oxygen species (ROS) and oxidative damage. In the present study, we address whether supplementation of glucose-containing culture media with energy substrates, pyruvate plus malate (P/M), protects rat primary neurons from A beta-induced degeneration and death. We found that P/M addition attenuated cell death evoked by beta-amyloid peptides (A beta(25-35) and A beta(1-40)) after 24 hr treatment and that this effect was blocked by alpha-ciano-3-hydroxycinnamate (CIN), suggesting that it requires mitochondrial pyruvate uptake. P/M supply to control and A beta-treated neuronal cultures increases cellular reducing power, as indicated by the ability to reduce the dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The early increases in ROS levels, measured by dichlorofluorescein (DCF) fluorescence, and caspase-3 activity that follow exposure to A beta were notably reduced in the presence of P/M. These results place activation of caspase-3 most likely downstream of oxidative damage to the mitochondria and indicate that mitochondrial NAD(P) redox status plays a central role in the neuroprotective effect of pyruvate. Inhibition of respiratory chain complexes and mitochondrial uncoupling did not block the early increase in ROS levels, suggesting that A beta could initiate oxidative stress by activating a source of ROS that is not accesible to the antioxidant defenses fueled by mitochondrial substrates.

PubMed Disclaimer

Publication types

LinkOut - more resources