Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003;13(4):525-8.
doi: 10.1002/hipo.10131.

Different actions of gabapentin and baclofen in hippocampus from weaver mice

Affiliations
Comparative Study

Different actions of gabapentin and baclofen in hippocampus from weaver mice

Sandrine Bertrand et al. Hippocampus. 2003.

Abstract

The pre- and postsynaptic effects of baclofen, a broad-spectrum gamma-aminobutyric acid (GABA)B receptor agonist, and gabapentin, a selective agonist at GABA(B) receptors composed of GABA(B)(1a,2) heterodimers, were examined in CA1 pyramidal cells using whole-cell patch-clamp recordings in hippocampal slices from different strains of mice. In slices from C57BL/6 mice, by means of GABA(B) receptors, gabapentin and baclofen activated outward K+ currents at resting membrane potential. In weaver mice with a Kir3.2 channel mutation, baclofen and gabapentin failed to activate postsynaptic K+ currents. However, in littermate controls of weaver mice, gabapentin failed to evoke K+ currents, whereas baclofen activated currents in the same cells. Thus, postsynaptic actions of gabapentin and baclofen on K+ currents are different in this mouse strain. Via presynaptic GABA(B) receptors, baclofen significantly reduced GABA(A) inhibitory postsynaptic currents (IPSCs) in slices from C57BL/6 mice, as well as weaver and control mice. In contrast, gabapentin did not affect IPSCs significantly in any group of mice. These results indicate that although baclofen and gabapentin are agonists at postsynaptic GABA(B) receptors positively coupled to K+ channels, their mechanism of action differs in certain strains of mice, including the weaver wild-type mice, suggesting a dissociation in their signaling mechanism and coupling to K+ channels.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources