Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jul 1;13(13):1145-9.
doi: 10.1016/s0960-9822(03)00415-9.

A novel MAP kinase regulates flagellar length in Chlamydomonas

Affiliations
Free article
Comparative Study

A novel MAP kinase regulates flagellar length in Chlamydomonas

Steven A Berman et al. Curr Biol. .
Free article

Abstract

Little is known about the molecular basis of organelle size control in eukaryotes. Cells of the biflagellate alga Chlamydomonas reinhardtii actively maintain their flagella at a precise length. Chlamydomonas mutants that lose control of flagellar length have been isolated and used to demonstrate that a dynamic process keeps flagella at an appropriate length. To date, none of the proteins required for flagellar length control have been identified in any eukaryotic organism. Here, we show that a novel MAP kinase is crucial to enforcing wild-type flagellar length in C. reinhardtii. Null mutants of LF4 [2], a gene encoding a protein with extensive amino acid sequence identity to a mammalian MAP kinase of unknown function, MOK [3], are unable to regulate the length of their flagella. The LF4 protein (LF4p) is localized to the flagella, and in vitro enzyme assays confirm that the protein is a MAP kinase. The long-flagella phenotype of lf4 cells is rescued by transformation with the cloned LF4 gene. The demonstration that a novel MAP kinase helps enforce flagellar length control indicates that a previously unidentified signal transduction pathway controls organelle size in C. reinhardtii.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources