Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992:70 Suppl:S223-38.
doi: 10.1139/y92-266.

Astrocytes, as well as neurons, express a diversity of ion channels

Affiliations
Review

Astrocytes, as well as neurons, express a diversity of ion channels

H Sontheimer. Can J Physiol Pharmacol. 1992.

Abstract

The electrophysiologist's view of brain astrocytes has changed markedly in recent years. In the past astrocytes were viewed as passive, K+ selective cells, but it is now evident that they are capable of expressing voltage- and ligand-activated channels previously thought to be restricted to neurons. The functional importance of most of these ion channels is not understood at present. However, from studies of astrocytes cultured from different species and brain regions, we learned that like their neuronal counterparts astrocytes are a heterogeneous group of brain cells showing similar heterogeneity in their ion-channel expression. Not only are subpopulations of astrocytes within areas of the brain equipped with specific sets of ion channels but, furthermore, regional heterogeneity is apparent. In addition, astrocyte ion channel expression is dynamic and changes during development. Some ion channels are only expressed postnatally, yet others appear to be expressed only during certain stages of development. Interestingly, the expression of some astrocyte channels, including Na+, Ca2+, and some K+ channels, appears to be controlled by neurons via mechanisms that are presently unknown. Some studies suggest roles for astrocyte channels in basic cell processes such as cell proliferation. Thus, although the role of some astrocyte channels remains unclear, our understanding of astrocyte physiology is starting to take shape and points towards roles of ion channels not involved in electrogenesis.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources