Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2003 Jul;88(7):3005-10.
doi: 10.1210/jc.2002-021687.

Interleukin-6 stimulates lipolysis and fat oxidation in humans

Affiliations
Clinical Trial

Interleukin-6 stimulates lipolysis and fat oxidation in humans

Gerrit van Hall et al. J Clin Endocrinol Metab. 2003 Jul.

Abstract

Although IL-6 is a key modulator of immune function, it also plays a role in regulating substrate metabolism. To determine whether IL-6 affects lipid metabolism, 18 healthy men were infused for 3 h with saline (Con; n = 6) or a high dose (High-rhIL6; n = 6) or a low dose (Low-rhIL6; n = 6) of recombinant human IL-6 (rhIL-6). The IL-6 concentration during Con, Low-rhIL6, and High-rhIL6 was at a steady state after 30 min of infusion at approximately 4, 140, and 320 pg/ml, respectively. Either dose of rhIL-6 was associated with a similar increase in fatty acid (FA) concentration and endogenous FA rate of appearance (R(a)) from 90 min after the start of the infusion. The FA concentration and FA R(a) continued to increase until the cessation of rhIL-6 infusion, reaching levels approximately 50% greater than Con values. The elevated levels reached at the end of rhIL-6 infusion persisted at least 3 h postinfusion. Triacylglycerol concentrations were unchanged during rhIL-6 infusion, whereas whole body fat oxidation increased after the second hour of rhIL-6 infusion. Of note, during Low-rhIL6, the induced elevation in FA concentration and FA R(a) occurred in the absence of any change in adrenaline, insulin, or glucagon, and no adverse side effects were observed. In conclusion, the data identify IL-6 as a potent modulator of fat metabolism in humans, increasing fat oxidation and FA reesterification without causing hypertriacylglyceridemia.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms