Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;90(1):155-64.
doi: 10.1152/jn.00244.2003.

Voltage-gated calcium channel currents in type I and type II hair cells isolated from the rat crista

Affiliations
Free article

Voltage-gated calcium channel currents in type I and type II hair cells isolated from the rat crista

Hong Bao et al. J Neurophysiol. 2003 Jul.
Free article

Erratum in

  • J Neurophysiol. 2004 Jan;91(1):589

Abstract

When studied in vitro, type I hair cells in amniote vestibular organs have a large, negatively activating K+ conductance. In type II hair cells, as in nonvestibular hair cells, outwardly rectifying K+ conductances are smaller and more positively activating. As a result, type I cells have more negative resting potentials and smaller input resistances than do type II cells; large inward currents fail to depolarize type I cells above -60 mV. In nonvestibular hair cells, afferent transmission is mediated by voltage-gated Ca2+ channels that activate positive to -60 mV. We investigated whether Ca2+ channels in type I cells activate more negatively so that quantal transmission can occur near the reported resting potentials. We used the perforated patch method to record Ca2+ channel currents from type I and type II hair cells isolated from the rat anterior crista (postnatal days 4-20). The activation range of the Ca2+ currents of type I hair cells differed only slightly from that of type II cells or nonvestibular hair cells. In 5 mM external Ca2+, currents in type I and type II cells were half-maximal at -41.1 +/- 0.5 (SE) mV (n = 10) and -37.2 +/- 0.2 mV (n = 10), respectively. In physiological external Ca2+ (1.3 mM), currents in type I cells were half-maximal at -46 +/- 1 mV (n = 8) and just 1% of maximal at -72 mV. These results lend credence to suggestions that type I cells have more positive resting potentials in vivo, possibly through K+ accumulation in the synaptic cleft or inhibition of the large K+ conductance. Ca2+ channel kinetics were also unremarkable; in both type I and type II cells, the currents activated and deactivated rapidly and inactivated only slowly and modestly even at large depolarizations. The Ca2+ current included an L-type component with relatively low sensitivity to dihydropyridine antagonists, consistent with the alpha subunit being CaV1.3 (alpha1D). Rat vestibular epithelia and ganglia were probed for L-type alpha-subunit expression with the reverse transcription-polymerase chain reaction. The epithelia expressed CaV1.3 and the ganglia expressed CaV1.2 (alpha1C).

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources