Semi-automated sensitivity analysis to assess systematic errors in observational data
- PMID: 12843771
- DOI: 10.1097/01.EDE.0000071419.41011.cf
Semi-automated sensitivity analysis to assess systematic errors in observational data
Abstract
Background: Published epidemiologic research usually provides a quantitative assessment of random error for effect estimates, but no quantitative assessment of systematic error. Sensitivity analysis can provide such an assessment.
Methods: We describe a method to reconstruct epidemiologic data, accounting for biases, and to display the results of repeated reconstructions as an assessment of error. We illustrate with a study of the effect of less-than-definitive therapy on breast cancer mortality.
Results: We developed SAS code to reconstruct the data that would have been observed had a set of systematic errors been absent, and to convey the results. After 4,000 reconstructions of the example data, we obtained a median estimate of relative hazard equal to 1.5 with a 95% simulation interval of 0.8-2.8. The relative hazard obtained by conventional analysis equaled 2.0, with a 95% confidence interval of 1.2-3.4.
Conclusions: Our method of sensitivity analysis can be used to quantify the systematic error for an estimate of effect and to describe that error in figures, tables, or text. In the example, the sources of error biased the conventional relative hazard away from the null, and that error was not accurately communicated by the conventional confidence interval.
Similar articles
-
A sensitivity analysis of a randomized controlled trial of zinc in treatment of falciparum malaria in children.Contemp Clin Trials. 2005 Jun;26(3):281-9. doi: 10.1016/j.cct.2005.01.004. Contemp Clin Trials. 2005. PMID: 15911462
-
Heuristic thinking and inference from observational epidemiology.Epidemiology. 2007 Jan;18(1):67-72. doi: 10.1097/01.ede.0000249522.75868.16. Epidemiology. 2007. PMID: 17149141
-
A method to automate probabilistic sensitivity analyses of misclassified binary variables.Int J Epidemiol. 2005 Dec;34(6):1370-6. doi: 10.1093/ije/dyi184. Epub 2005 Sep 19. Int J Epidemiol. 2005. PMID: 16172102
-
Evaluation of instrument error and method agreement.AANA J. 1996 Jun;64(3):261-8. AANA J. 1996. PMID: 9095698 Review.
-
Classification based upon gene expression data: bias and precision of error rates.Bioinformatics. 2007 Jun 1;23(11):1363-70. doi: 10.1093/bioinformatics/btm117. Epub 2007 Mar 28. Bioinformatics. 2007. PMID: 17392326 Review.
Cited by
-
Daily siesta, cardiovascular risk factors, and measures of subclinical atherosclerosis: results of the Heinz Nixdorf Recall Study.Sleep. 2007 Sep;30(9):1111-9. doi: 10.1093/sleep/30.9.1111. Sleep. 2007. PMID: 17910383 Free PMC article.
-
Uncertainty analysis: an example of its application to estimating a survey proportion.J Epidemiol Community Health. 2007 Jul;61(7):650-4. doi: 10.1136/jech.2006.053660. J Epidemiol Community Health. 2007. PMID: 17568060 Free PMC article. Review.
-
Appropriate epidemiologic methods as a prerequisite for valid study results.Eur J Epidemiol. 2008;23(12):761-5. doi: 10.1007/s10654-008-9299-2. Epub 2008 Nov 19. Eur J Epidemiol. 2008. PMID: 19016334 No abstract available.
-
Sarcoidosis mortality in Sweden: a population-based cohort study.Eur Respir J. 2018 Feb 21;51(2):1701815. doi: 10.1183/13993003.01815-2017. Print 2018 Feb. Eur Respir J. 2018. PMID: 29467203 Free PMC article.
-
Evaluating uncertainty to strengthen epidemiologic data for use in human health risk assessments.Environ Health Perspect. 2014 Nov;122(11):1160-5. doi: 10.1289/ehp.1308062. Epub 2014 Jul 31. Environ Health Perspect. 2014. PMID: 25079138 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources