Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug;273(2):741-51.
doi: 10.1002/ar.a.10082.

Histological studies of bone formation during pedicle restoration and early antler regeneration in roe deer and fallow deer

Affiliations
Free article

Histological studies of bone formation during pedicle restoration and early antler regeneration in roe deer and fallow deer

Uwe Kierdorf et al. Anat Rec A Discov Mol Cell Evol Biol. 2003 Aug.
Free article

Abstract

The purpose of the present study was to examine the process of bone formation in the regenerating cranial appendages of roe deer (Capreolus capreolus) and fallow deer (Dama dama) during the early postcasting period. After the antlers are cast, osteoclastic and osteoblastic activities lead to a smoothing of the pedicle's separation surface, a strengthening of the pedicle bone, and a partial restoration of the distal pedicle portion that was lost along with the cast antler. Initially, bone formation occurs by intramembranous ossification, but early during the regeneration process cartilage is formed at the tips of the cranial appendages, and is subsequently replaced by bone in a process of endochodral ossification. Shortly after the antlers are cast, the cambium layer of the periosteum in the distal pedicle is markedly enlarged, which suggests that the periosteum serves as a cell source for the bone-forming tissue covering the exposed pedicle bone. The histological findings of our study are consistent with the view that the bony component of the regenerating cranial appendages of deer is largely derived from the pedicle periosteum. Based on findings in other bone systems, we speculate that stem cells that can undergo both osteogenic and chondrogenic differentiation are present in the pedicle periosteum. The early onset of chondrogenesis in the regeneration process is regarded as an adaptation to the necessity of producing a huge volume of bone within a short period. This parallels the situation in other cases of chondrogenesis in membrane bones.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources