Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jul 15;171(2):1016-22.
doi: 10.4049/jimmunol.171.2.1016.

Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma

Affiliations
Comparative Study

Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma

Karim Y Vermaelen et al. J Immunol. .

Abstract

Dendritic cells (DCs) appear to be strategically implicated in allergic diseases, including asthma. Matrix metalloproteinase (MMP)-9 mediates transmigration of inflammatory leukocytes across basement membranes. This study investigated the role of MMP-9 in airway DC trafficking during allergen-induced airway inflammation. MMP-9 gene deletion affected the trafficking of pulmonary DCs in a specific way: only the inflammatory transmigration of DCs into the airway lumen was impaired, whereas DC-mediated transport of airway Ag to the thoracic lymph nodes remained unaffected. In parallel, the local production of the Th2-attracting chemokine CC chemokine ligand 17/thymus and activation-regulated chemokine, which was highly concentrated in purified lung DCs, fell short in the airways of allergen-exposed MMP-9(-/-) mice. This was accompanied by markedly reduced peribronchial eosinophilic infiltrates and impaired allergen-specific IgE production. We conclude that the specific absence of MMP-9 activity inhibits the development of allergic airway inflammation by impairing the recruitment of DCs into the airways and the local production of DC-derived proallergic chemokines.

PubMed Disclaimer

Publication types

MeSH terms