Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun 1;20(11):RC80.
doi: 10.1523/JNEUROSCI.20-11-j0004.2000.

Extracellular protons both increase the activity and reduce the conductance of capsaicin- gated channels

Affiliations

Extracellular protons both increase the activity and reduce the conductance of capsaicin- gated channels

T K Baumann et al. J Neurosci. .

Abstract

Capsaicin evokes a membrane current in trigeminal ganglion neurons that is increased substantially in a moderately acidic extracellular environment. Using excised outside-out membrane patches, we studied the mechanism by which protons enhance the sustained response to capsaicin. In the absence of capsaicin, extracellular exposure to a moderately acidic physiological solution (pH 6.6) did not result in sustained channel openings in any capsaicin-sensitive outside-out patches. When co-applied with capsaicin, the acidic extracellular solution greatly increased the probability of capsaicin-gated channels being in the open state. In addition, acidic extracellular solution appeared to increase the number of channels available to be opened by capsaicin. The amplitude of the unitary currents was reduced by the acidic extracellular solution. These results show that the proton enhancement of the capsaicin-evoked whole-cell excitatory current is attributable to proton-receptive site(s) causing a marked increase in the activity of capsaicin-gated channels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources