A robust, real-time control scheme for multifunction myoelectric control
- PMID: 12848352
- DOI: 10.1109/TBME.2003.813539
A robust, real-time control scheme for multifunction myoelectric control
Abstract
This paper represents an ongoing investigation of dexterous and natural control of upper extremity prostheses using the myoelectric signal (MES). The scheme described within uses pattern recognition to process four channels of MES, with the task of discriminating multiple classes of limb movement. The method does not require segmentation of the MES data, allowing a continuous stream of class decisions to be delivered to a prosthetic device. It is shown in this paper that, by exploiting the processing power inherent in current computing systems, substantial gains in classifier accuracy and response time are possible. Other important characteristics for prosthetic control systems are met as well. Due to the fact that the classifier learns the muscle activation patterns for each desired class for each individual, a natural control actuation results. The continuous decision stream allows complex sequences of manipulation involving multiple joints to be performed without interruption. Finally, minimal storage capacity is required, which is an important factor in embedded control systems.
Similar articles
-
Continuous myoelectric control for powered prostheses using hidden Markov models.IEEE Trans Biomed Eng. 2005 Jan;52(1):121-4. doi: 10.1109/TBME.2004.836492. IEEE Trans Biomed Eng. 2005. PMID: 15651571
-
A wavelet-based continuous classification scheme for multifunction myoelectric control.IEEE Trans Biomed Eng. 2001 Mar;48(3):302-11. doi: 10.1109/10.914793. IEEE Trans Biomed Eng. 2001. PMID: 11327498
-
Channel and feature selection in multifunction myoelectric control.Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5182-5. doi: 10.1109/IEMBS.2007.4353509. Annu Int Conf IEEE Eng Med Biol Soc. 2007. PMID: 18003175
-
Myoelectric signal processing for control of powered limb prostheses.J Electromyogr Kinesiol. 2006 Dec;16(6):541-8. doi: 10.1016/j.jelekin.2006.08.006. Epub 2006 Oct 11. J Electromyogr Kinesiol. 2006. PMID: 17045489 Review.
-
Control of multifunctional prosthetic hands by processing the electromyographic signal.Crit Rev Biomed Eng. 2002;30(4-6):459-85. doi: 10.1615/critrevbiomedeng.v30.i456.80. Crit Rev Biomed Eng. 2002. PMID: 12739757 Review.
Cited by
-
Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration.IEEE Trans Biomed Eng. 2012 Mar;59(3):645-52. doi: 10.1109/TBME.2011.2177662. Epub 2011 Nov 29. IEEE Trans Biomed Eng. 2012. PMID: 22147289 Free PMC article.
-
Electromyography data for non-invasive naturally-controlled robotic hand prostheses.Sci Data. 2014 Dec 23;1:140053. doi: 10.1038/sdata.2014.53. eCollection 2014. Sci Data. 2014. PMID: 25977804 Free PMC article.
-
BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms.Source Code Biol Med. 2013 Apr 18;8(1):11. doi: 10.1186/1751-0473-8-11. Source Code Biol Med. 2013. PMID: 23597283 Free PMC article.
-
Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.J Neuroeng Rehabil. 2012 Jun 15;9:40. doi: 10.1186/1743-0003-9-40. J Neuroeng Rehabil. 2012. PMID: 22703711 Free PMC article.
-
User-Independent Hand Gesture Recognition Classification Models Using Sensor Fusion.Sensors (Basel). 2022 Feb 9;22(4):1321. doi: 10.3390/s22041321. Sensors (Basel). 2022. PMID: 35214223 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous