Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul 16;51(15):4284-90.
doi: 10.1021/jf030091u.

Formation of modified fatty acids and oxyphytosterols during refining of low erucic acid rapeseed oil

Affiliations

Formation of modified fatty acids and oxyphytosterols during refining of low erucic acid rapeseed oil

Pierre Lambelet et al. J Agric Food Chem. .

Abstract

Formation of trans fatty acids and cyclic fatty acid monomers was investigated during refining of low erucic acid rapeseed oil. The first steps of the refining process, that is, degumming, neutralization, and bleaching, hardly modified the fatty acid profile. In contrast, deodorization produced substantial quantities of trans fatty acids (>5% of total fatty acids) and small amounts of cyclic fatty acid monomers (650 mg of cyclic fatty acid monomers/kg of oil) when severe conditions (5-6 h at 250 degrees C) were used. Alpha-linolenic acid was the main precursor of cyclic fatty acid monomers. The influence of deodorization on the chemical composition of low erucic acid rapeseed oil was studied additionally. Whereas free fatty acids, peroxides, and tocopherols decreased, neither total polar compounds nor oxyphytosterols changed during deodorization. Oxyphytosterols were identified by GC-MS. Three oxyphytosterols not yet observed in oil were tentatively identified as 6beta-hydroxycampestanol, 6beta-hydroxysitostanol, and 6beta-hydroxybrassicastanol. Brassicasterol oxides were the most abundant oxyphytosterols.

PubMed Disclaimer

LinkOut - more resources