Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Mar;2(3):157-66.
doi: 10.1016/s1474-4422(03)00322-3.

Promotion of axonal regeneration in the injured CNS

Affiliations
Review

Promotion of axonal regeneration in the injured CNS

Michael E Selzer. Lancet Neurol. 2003 Mar.

Abstract

Molecules that are found in the extracellular environment at a CNS lesion site, or that are associated with myelin, inhibit axon growth. In addition, neuronal changes--such as an age-dependent reduction in concentrations of cyclic AMP--render the neuron less able to respond to axotomy by a rapid, forward, actin-dependent movement. An alternative mechanism, based on the protrusive forces generated by microtubule elongation or the anterograde transport of cytoskeletal elements, may underlie a slower form of axon elongation that happens during regeneration in the mature CNS. Therapeutic approaches that restore the extracellular CNS environment or the neuron's characteristics back to a more embryonic state increase axon regeneration and improve functional recovery after injury. These advances in the understanding of regeneration in the CNS have major implications for neurorehabilitation and for the use of axonal regeneration as a therapeutic approach to disorders of the CNS such as spinal-cord injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources