Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;13(11):765-75.
doi: 10.1093/glycob/cwg095. Epub 2003 Jul 8.

Computational analysis of multivalency in lectins: structures of garlic lectin-oligosaccharide complexes and their aggregates

Affiliations

Computational analysis of multivalency in lectins: structures of garlic lectin-oligosaccharide complexes and their aggregates

Gosu Ramachandraiah et al. Glycobiology. 2003 Nov.

Abstract

Multivalency in lectins is a phenomenon that has been discussed at considerable length. The structural basis for the role of multivalency in garlic lectin has been investigated here through computational studies. Biochemical studies have shown that the binding affinity of garlic lectin for high mannose oligosaccharides is orders of magnitude greater than that for mannose. Modeling and energy calculations clearly indicate that such increase in affinity cannot be accounted for by binding of these oligosaccharides at any of the six sites of a garlic lectin dimer. These studies also indicate that a given oligosaccharide cannot bind simultaneously to more than one binding site on a lectin dimer. The possibility of a given oligosaccharide simultaneously binding to and hence linking two or more lectin molecules was therefore explored. This study showed that trimannosides and higher oligomers can cross-link lectin dimers, amplifying the protein-oligosaccharide interactions severalfold, thus explaining the role of multivalency in enhancing affinity. A comprehensive exploration of all possible cross-links posed a formidable computational problem. Even a partial exploration involving a carefully chosen region of the conformational space clearly showed that a given dimer pair can be cross-linked not only by a single oligosaccharide molecule but also simultaneously by two oligosaccharides. The number of such possible double cross-links, including those forming interesting tetrameric structures, generally increases with the size of the oligosaccharide, correlating with the biochemical data. In addition to their immediate relevance to garlic lectin, these studies are of general interest in relation to lectin-oligosaccharide interactions.

PubMed Disclaimer

Publication types

LinkOut - more resources