Morphology of cell-substratum adhesion. Influence of receptor heterogeneity and nonspecific forces
- PMID: 1285299
- DOI: 10.1007/BF02823657
Morphology of cell-substratum adhesion. Influence of receptor heterogeneity and nonspecific forces
Abstract
Many cell types modulate growth, differentiation, and motility through changes in cell substrate adhesion, including regulation of focal contact formation. Clustering of cell surface adhesion receptors is an essential early step in the development of focal contacts, and thus may influence cell physiology. In this paper, we present a theoretical framework to examine how cell surface chemistry affects receptor clustering. Our one-dimensional tape-peeling model couples the equations of mechanical equilibrium for a cell membrane with kinetic receptor-ligand binding relations. We considered two distinct model scenarios: Adhesion mediated by multiple receptor-ligand interactions of different length and specific binding of a single receptor type occurs in the presence of van der Waals attraction and nonspecific repulsion. In each case, nonuniform (wave-like) membrane morphologies are observed in certain parameter ranges that support the clustering of adhesion receptors. The formation of these morphologies is described in terms of a balance of membrane stresses; when cell-surface potential as a function of separation distance is symmetric between two potential energy minima, nonuniform morphologies are obtained. Increases in the chemical binding energy between receptor and ligand (e.g., increases in ligand density) or decreases in the membrane rigidity result in smaller wavelengths for nonuniform interfaces. Additionally, we show wave-like geometries appear only when the mechanical compliance of receptor-ligand bonds is within an intermediate range, and examine how the mobility of "repellers"--glycocalyx molecules that exert a nonspecific repulsive force--influences membrane morphology. We find fully mobile repellers always redistribute to prevent nonuniform morphologies.
Similar articles
-
A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength.Biophys J. 1993 Mar;64(3):936-59. doi: 10.1016/S0006-3495(93)81456-5. Biophys J. 1993. PMID: 8386020 Free PMC article.
-
Focal contact assembly through cytoskeletal polymerization: steady state analysis.J Math Biol. 1994;32(7):677-704. doi: 10.1007/BF00163022. J Math Biol. 1994. PMID: 7930961
-
Kinetics of cell detachment: peeling of discrete receptor clusters.Biophys J. 1994 Dec;67(6):2522-34. doi: 10.1016/S0006-3495(94)80742-8. Biophys J. 1994. PMID: 7696491 Free PMC article.
-
Membrane-membrane contact: involvement of interfacial instability in the generation of discrete contacts.Biosci Rep. 1989 Dec;9(6):675-91. doi: 10.1007/BF01114806. Biosci Rep. 1989. PMID: 2692722 Review.
-
Single-cell force spectroscopy.J Cell Sci. 2008 Jun 1;121(11):1785-91. doi: 10.1242/jcs.030999. J Cell Sci. 2008. PMID: 18492792 Review.
Cited by
-
A thermodynamic model for receptor clustering.Biophys J. 1999 Nov;77(5):2358-65. doi: 10.1016/S0006-3495(99)77073-6. Biophys J. 1999. PMID: 10545339 Free PMC article.
-
Imaging fluorescence correlation spectroscopy: nonuniform IgE distributions on planar membranes.Biophys J. 1996 Apr;70(4):2001-7. doi: 10.1016/S0006-3495(96)79766-7. Biophys J. 1996. PMID: 8785359 Free PMC article.
-
Adhesive dynamics.J Biomech Eng. 2014 Feb;136(2):021006. doi: 10.1115/1.4026402. J Biomech Eng. 2014. PMID: 24384944 Free PMC article. Review.
-
Ionic strength dependence of localized contact formation between membranes: nonlinear theory and experiment.Biophys J. 1999 Aug;77(2):817-28. doi: 10.1016/s0006-3495(99)76934-1. Biophys J. 1999. PMID: 10423428 Free PMC article.
-
Equilibrium Modeling of the Mechanics and Structure of the Cancer Glycocalyx.Biophys J. 2019 Feb 19;116(4):694-708. doi: 10.1016/j.bpj.2018.12.023. Epub 2019 Jan 15. Biophys J. 2019. PMID: 30736980 Free PMC article.