Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;24(23):4181-90.
doi: 10.1016/s0142-9612(03)00314-4.

Structure and mechanical properties of poly(D,L-lactic acid)/poly(epsilon -caprolactone) blends

Affiliations

Structure and mechanical properties of poly(D,L-lactic acid)/poly(epsilon -caprolactone) blends

M E Broz et al. Biomaterials. 2003 Oct.

Abstract

A series of blends of the biodegradable polymers poly(D,L-lactic acid) and poly( epsilon -caprolactone) were prepared by varying mass fraction across the range of compositions. Tensile testing was performed at room temperature using an extensometer and the elastic modulus was calculated for each blend. The blends were also tested to failure, and the strain-at-failure and yield stress recorded. While the blend has been shown to have a lower critical solution temperature, the mechanical properties were insensitive to the annealing conditions. Scanning electron microscopy was used to characterize the blend microstructure and poor adhesion was observed at the interface between blend components. Differential scanning calorimetry was performed but the results were somewhat variable, indicating this blend may have complex phase behavior that depends sensitively on the method of preparation. However, nuclear magnetic resonance data indicate the two components are phase separated. A percolation model is used to explain the observed mechanical data and the results are consistent with the predictions of the Kerner-Uemura-Takayangi model. The results of these experiments demonstrate the utility of polymer blending in tuning material properties.

PubMed Disclaimer

Publication types

LinkOut - more resources