The C terminus of the human telomerase reverse transcriptase is a determinant of enzyme processivity
- PMID: 12853623
- PMCID: PMC165952
- DOI: 10.1093/nar/gkg437
The C terminus of the human telomerase reverse transcriptase is a determinant of enzyme processivity
Abstract
The catalytic subunit of telomerase (TERT) contains conserved reverse transcriptase-like motifs but N- and C-terminal regions unique to telomerases. Despite weak sequence conservation, the C terminus of TERTs from various organisms has been implicated in telomerase-specific functions, including telomerase activity, functional multimerization with other TERT molecules, enzyme processivity and telomere length maintenance. We studied hTERT proteins containing small C-terminal deletions or substitutions to identify and characterize hTERT domains mediating telomerase activity, hTERT multimerization and processivity. Using sequence alignment of five vertebrate TERTs and Arabidopsis thaliana TERT, we identified blocks of highly conserved amino acids that were required for human telomerase activity and functional hTERT complementation. We adapted the non-PCR-based telomerase elongation assay to characterize telomerase expressed and reconstituted in the in vitro transcription/translation rabbit reticulocyte lysate system. Using this assay, we found that the hTERT C terminus, like the C terminus of Saccharomyces cerevisiae TERT, contributes to successive nucleotide addition within a single 6-base telomeric repeat (type I processivity). Certain mutations in the hTERT C terminus also reduced the repetitive addition of multiple telomeric repeats (type II processivity). Our results suggest a functionally conserved role for the TERT C terminus in telomerase enzyme processivity.
Figures








Similar articles
-
Functional multimerization of human telomerase requires an RNA interaction domain in the N terminus of the catalytic subunit.Mol Cell Biol. 2002 Feb;22(4):1253-65. doi: 10.1128/MCB.22.4.1253-1265.2002. Mol Cell Biol. 2002. PMID: 11809815 Free PMC article.
-
The Insertion in Fingers Domain in Human Telomerase Can Mediate Enzyme Processivity and Telomerase Recruitment to Telomeres in a TPP1-Dependent Manner.Mol Cell Biol. 2015 Oct 26;36(1):210-22. doi: 10.1128/MCB.00746-15. Print 2016 Jan 1. Mol Cell Biol. 2015. PMID: 26503784 Free PMC article.
-
An anchor site-type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization.Mol Biol Cell. 2005 Jul;16(7):3152-61. doi: 10.1091/mbc.e05-02-0148. Epub 2005 Apr 27. Mol Biol Cell. 2005. PMID: 15857955 Free PMC article.
-
Analysis of telomerase activity and detection of its catalytic subunit, hTERT.Anal Biochem. 2003 Apr 1;315(1):1-21. doi: 10.1016/s0003-2697(02)00663-2. Anal Biochem. 2003. PMID: 12672407 Review.
-
Telomerase reverse transcriptase in the regulation of gene expression.BMB Rep. 2014 Jan;47(1):8-14. doi: 10.5483/bmbrep.2014.47.1.284. BMB Rep. 2014. PMID: 24388106 Free PMC article. Review.
Cited by
-
Multiple DNA-binding sites in Tetrahymena telomerase.Nucleic Acids Res. 2008 Mar;36(4):1260-72. doi: 10.1093/nar/gkm866. Epub 2008 Jan 3. Nucleic Acids Res. 2008. PMID: 18174223 Free PMC article.
-
RNA/DNA hybrid binding affinity determines telomerase template-translocation efficiency.EMBO J. 2012 Jan 4;31(1):150-61. doi: 10.1038/emboj.2011.363. Epub 2011 Oct 11. EMBO J. 2012. PMID: 21989387 Free PMC article.
-
Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells.Open Biol. 2017 Mar;7(3):160338. doi: 10.1098/rsob.160338. Open Biol. 2017. PMID: 28330934 Free PMC article. Review.
-
A homozygous telomerase T-motif variant resulting in markedly reduced repeat addition processivity in siblings with Hoyeraal Hreidarsson syndrome.Blood. 2013 May 2;121(18):3586-93. doi: 10.1182/blood-2012-08-447755. Epub 2013 Mar 28. Blood. 2013. PMID: 23538340 Free PMC article.
-
The telomerase-specific T motif is a restrictive determinant of repetitive reverse transcription by human telomerase.Mol Cell Biol. 2010 Jan;30(2):447-59. doi: 10.1128/MCB.00853-09. Epub 2009 Nov 16. Mol Cell Biol. 2010. PMID: 19917726 Free PMC article.
References
-
- Blackburn E.H. (2001) Switching and signaling at the telomere. Cell, 106, 661–673. - PubMed
-
- Harrington L. and Robinson,M.O. (2002) Telomere dysfunction: multiple paths to the same end. Oncogene, 21, 592–597. - PubMed
-
- Blackburn E. (1999) Telomerase. In Gestland,R.F., Cech,T.R. and Atkins,J.F. (eds), The RNA World, 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 609–635.
-
- Feng J., Funk,W.D., Wang,S.-S., Weinrich,S.L., Avilion,A.A., Chiu,C.-P., Adams,R.R., Chang,E., Allsopp,R.C., Yu,J., Le,S., West,M.D., Harley,C.B., Andrews,W.H., Greider,C.W. and Villeponteau,B. (1995) The RNA component of human telomerase. Science, 269, 1236–1241. - PubMed
-
- Nakamura T.M., Morin,G.B., Chapman,K.B., Weinrich,S.L., Andrews,W.H., Lingner,J., Harley,C.B. and Cech,T.R. (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science, 277, 955–959. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases