Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug;170(2 Pt 1):628-33.
doi: 10.1097/01.ju.0000069428.46133.d5.

Role of mitochondria in the generation of spontaneous activity in detrusor smooth muscles of the Guinea pig bladder

Affiliations

Role of mitochondria in the generation of spontaneous activity in detrusor smooth muscles of the Guinea pig bladder

Yasue Kubota et al. J Urol. 2003 Aug.

Abstract

Purpose: The rhythmic electrical activity of gastrointestinal smooth muscles is associated with mitochondrial Ca2+ handling. We examined the role of mitochondria in the generation of spontaneous activity in detrusor smooth muscles.

Materials and methods: Changes in the membrane potential and intracellular Ca2+ concentration ([Ca2+]i) were measured in detrusor smooth muscles of the guinea pig using conventional microelectrode techniques and Fura-PE3 (Calbiochem, San Diego, California) fluorescence, respectively.

Results: Detrusor smooth muscle cells showed spontaneous action potentials and associated transient increases in [Ca2+]i (Ca transients). The mitochondrial protonophore CCCP (carbonyl cyanide m-chlorophenyl hydrazone) (10 microM) depolarized the membrane, increased [Ca2+]i and caused activation followed by suppression of action potentials and Ca transients. High K solution potassium concentration ([K+]o = 30 mM) depolarized the membrane and increased [Ca2+]i to levels similar to those produced by 10 microM CCCP but this depolarization did not suppress action potentials. Nifedipine (10 microM) decreased the amplitude of CCCP induced increases in [Ca2+]i by about 50%. CCCP induced increases in [Ca2+]i were further reduced by about 70% in Ca2+-free solution and by about 30% in the presence of 10 microM SKF96365, a blocker for store operated Ca entry. In the presence of 10 microM nifedipine and 10 microM cyclopiazonic acid, CCCP induced [Ca2+]i responses were suppressed to about 25% of control values. Under these conditions repetitive applications of 10 microM acetylcholine chloride successively decreased [Ca2+]i responses and finally failed to increase [Ca2+]i. Subsequent CCCP failed to elevate [Ca2+]i.

Conclusions: These results suggest that mitochondria have an important role in Ca2+ buffering in bladder smooth muscles. Mitochondrial Ca2+ is presumably supplied by Ca2+ transport from internal stores and also by capacitative calcium entry through nonselective cation channels. Mitochondrial Ca2+ handling may also be critical for the generation of spontaneous activity in detrusor smooth muscle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources