Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jul;99(1):143-50.
doi: 10.3171/jns.2003.99.1.0143.

Anthropomorphic simulations of falls, shakes, and inflicted impacts in infants

Affiliations
Comparative Study

Anthropomorphic simulations of falls, shakes, and inflicted impacts in infants

Michael T Prange et al. J Neurosurg. 2003 Jul.

Abstract

Object: Rotational loading conditions have been shown to produce subdural hemorrhage and diffuse axonal injury. No experimental data are available with which to compare the rotational response of the head of an infant during accidental and inflicted head injuries. The authors sought to compare rotational deceleration sustained by the head among free falls, from different heights onto different surfaces, with those sustained during shaking and inflicted impact.

Methods: An anthropomorphic surrogate of a 1.5-month-old human infant was constructed and used to simulate falls from 0.3 m (1 ft), 0.9 m (3 ft), and 1.5 m (5 ft), as well as vigorous shaking and inflicted head impact. During falls, the surrogate experienced occipital contact against a concrete surface, carpet pad, or foam mattress. For shakes, investigators repeatedly shook the surrogate in an anteroposterior plane; inflicted impact was defined as the terminal portion of a vigorous shake, in which the surrogate's occiput made contact with a rigid or padded surface. Rotational velocity was recorded directly and the maximum (peak-peak) change in angular velocity (delta theta(max)) and the peak angular acceleration (theta(max)) were calculated. Analysis of variance revealed significant increases in the delta theta(max) and theta(max) associated with falls onto harder surfaces and from higher heights. During inflicted impacts against rigid surfaces, the delta theta(max) and theta(max) were significantly greater than those measured under all other conditions.

Conclusions: Vigorous shakes of this infant model produced rotational responses similar to those resulting from minor falls, but inflicted impacts produced responses that were significantly higher than even a 1.5-m fall onto concrete. Because larger accelerations are associated with an increasing likelihood of injury, the findings indicate that inflicted impacts against hard surfaces are more likely to be associated with inertial brain injuries than falls from a height less than 1.5 m or from shaking.

PubMed Disclaimer

Comment in

  • Rotational injury.
    Uscinski RH, Thibault LE, Ommaya AK. Uscinski RH, et al. J Neurosurg. 2004 Mar;100(3):574-5; author reply 575. doi: 10.3171/jns.2004.100.3.0574a. J Neurosurg. 2004. PMID: 15035300 No abstract available.

Similar articles

Cited by

Publication types

LinkOut - more resources