Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;285(5):H2072-83.
doi: 10.1152/ajpheart.00396.2003. Epub 2003 Jul 10.

Phenotypic consequences of beta1-tubulin expression and MAP4 decoration of microtubules in adult cardiocytes

Affiliations
Free article

Phenotypic consequences of beta1-tubulin expression and MAP4 decoration of microtubules in adult cardiocytes

Masaru Takahashi et al. Am J Physiol Heart Circ Physiol. 2003 Nov.
Free article

Abstract

In pressure-overload cardiac hypertrophy, microtubule network densification is one cause of contractile dysfunction. Cardiac transcriptional upregulation of beta1-tubulin rather than the constitutive beta4-tubulin and of microtubule-associated protein (MAP)4 accompanies hypertrophy, with extensive microtubule decoration by MAP4. Because MAP4 stabilizes microtubules, and because the isoform-variable carboxy terminus of beta-tubulin binds to MAP4, we wished to determine whether one or both of these proteins has etiologic significance for cardiac microtubule network densification. Recombinant adenoviruses encoding beta1-tubulin, beta4-tubulin, and MAP4 were used to infect isolated cardiocytes. Overexpressed MAP4 caused a shift of tubulin dimers to the polymerized fraction and formation of a dense, stable microtubule network. Overexpressed beta1- or beta4-tubulin had neither any independent effect on these variables nor any effect additive to that of simultaneously overexpressed MAP4. Results from transgenic mice with cardiac overexpression of beta1-tubulin or MAP4 were confirmatory, but unlike the effects of brief adenovirus-mediated MAP4 overexpression in isolated cardiocytes, MAP4 transgenic hearts showed a marked increase in total alpha- and beta-tubulin. Thus MAP4 overexpression caused increased tubulin expression, formation of stable microtubules, and altered microtubule network properties, such that MAP4 upregulation may be one cause for the dense, stable microtubule network characteristic of pressure-overloaded, hypertrophied cardiocytes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources