Assessment of conduction properties and thermal noise in cell membranes by admittance spectroscopy
- PMID: 1285724
- DOI: 10.1002/bem.2250130709
Assessment of conduction properties and thermal noise in cell membranes by admittance spectroscopy
Abstract
Advances in the speed of signal processing enable application of a Fourier-synthesized function as a small perturbation (1 mV) superposed on voltage clamp steps to rapidly (< 1 sec) acquire cell membrane complex driving-point functions (impedance or admittance) in several frequency bands ranging from 1 Hz to 10 kHz. Curve fits of admittance models to these data yield a complete quantitative linear description of membrane conduction systems and their kinetics. Furthermore, the rate constants between microscopic states of an ion channel can be calculated from conductance parameters derived from model curve fits of membrane admittances. Additionally, the power spectrum of membrane thermal noise is obtainable from impedance determinations by use of the Nyquist relation. Consequently, rapid driving-point function determinations provide the most complete macroscopic assessment of membrane conduction properties presently available. Admittance determinations of the potassium conduction system in squid giant axon and the potassium conducting "inward rectifier" in snail neuron are used to illustrate the above points.
Similar articles
-
Inward rectifier K+-channel kinetics from analysis of the complex conductance of Aplysia neuronal membrane.Biophys J. 1988 May;53(5):747-57. doi: 10.1016/S0006-3495(88)83155-2. Biophys J. 1988. PMID: 2455551 Free PMC article.
-
Fluctuation and linear analysis of Na-current kinetics in squid axon.Biophys J. 1983 Sep;43(3):293-307. doi: 10.1016/S0006-3495(83)84353-7. Biophys J. 1983. PMID: 6626670 Free PMC article.
-
Determination of K(+)-channel relaxation times in squid axon membrane by Hodgkin-Huxley and by direct linear analysis.Biophys Chem. 1991 Feb;39(2):177-90. doi: 10.1016/0301-4622(91)85020-q. Biophys Chem. 1991. PMID: 2059666
-
Molecular aspects of electrical excitation in lipid bilayers and cell membranes.Horiz Biochem Biophys. 1976;2:230-84. Horiz Biochem Biophys. 1976. PMID: 776770 Review.
-
Cable theory in neurons with active, linearized membranes.Biol Cybern. 1984;50(1):15-33. doi: 10.1007/BF00317936. Biol Cybern. 1984. PMID: 6324889 Review.
Cited by
-
Interaction of apical and basal membrane ion channels underlies electroreception in ampullary epithelia of skates.Biophys J. 1994 Oct;67(4):1525-33. doi: 10.1016/S0006-3495(94)80626-5. Biophys J. 1994. PMID: 7529586 Free PMC article.
-
Contribution of electrogenic ion transport to impedance of the algae Valonia utricularis and artificial membranes.Biophys J. 1994 Oct;67(4):1582-93. doi: 10.1016/S0006-3495(94)80631-9. Biophys J. 1994. PMID: 7819490 Free PMC article.
-
Ion channels and transporters in the electroreceptive ampullary epithelium from skates.Biophys J. 1995 Dec;69(6):2467-75. doi: 10.1016/S0006-3495(95)80117-7. Biophys J. 1995. PMID: 8599653 Free PMC article.
-
Localization and function of the electrical oscillation in electroreceptive ampullary epithelium from skates.Biophys J. 1995 Dec;69(6):2458-66. doi: 10.1016/S0006-3495(95)80116-5. Biophys J. 1995. PMID: 8599652 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials