Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jun:990:468-73.
doi: 10.1111/j.1749-6632.2003.tb07412.x.

Rickettsia rickettsii infection in the pine vole, Microtus pinetorum: kinetics of infection and quantitation of antioxidant enzyme gene expression by RT-PCR

Affiliations

Rickettsia rickettsii infection in the pine vole, Microtus pinetorum: kinetics of infection and quantitation of antioxidant enzyme gene expression by RT-PCR

Marina E Eremeeva et al. Ann N Y Acad Sci. 2003 Jun.

Abstract

The pine vole, Microtus pinetorum, was evaluated as a laboratory animal model for infection with Rickettsia rickettsii. Voles demonstrated signs of acute disease, and 45% of infected animals died following intraperitoneal infection with 3 x 10(6) plaque forming units of R. rickettsii. Spleen, liver, kidney, lung, brain, testes and blood were analyzed for rickettsial burden by a quantitative PCR assay. The distribution of rickettsiae in tissues during the course of infection was determined by immunohistochemical staining and pathological changes in tissues were correlated with the clinical severity of infection. Quantitative RT-PCR assays were designed to measure the mRNA levels of the antioxidant enzyme genes for catalase, glutathione peroxidase, glutathione reductase, heme oxygenase, Cu-Zn superoxide dismutase (SOD) and Mn-SOD, and 2 housekeeping genes, actin and glyceraldehyde phosphate dehydrogenase. Tissues from acutely ill animals on days 2 to 6 of infection, convalescent animals, and uninfected control animals were studied. The number of transcripts of each enzyme gene was determined and compared to the degree of rickettsial infection present. These studies demonstrate that the pine vole is a valuable experimental model for studying infection with R. rickettsii. Our results provide the first experimental evidence that R. rickettsii causes alteration(s) of the anti-oxidant system in vivo.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources