Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 May-Jun;9(3):193-205.
doi: 10.1093/humupd/dmg022.

Hydroxysteroid dehydrogenases and pre-receptor regulation of steroid hormone action

Affiliations
Review

Hydroxysteroid dehydrogenases and pre-receptor regulation of steroid hormone action

Trevor M Penning. Hum Reprod Update. 2003 May-Jun.

Abstract

Steroid target tissues regulate the local level of steroid hormone that can bind and trans-activate nuclear receptors (a process known as intracrine modulation). This pre-receptor regulation can be achieved by hydroxysteroid dehydrogenases (HSDs). For each sex hormone there is a pair of HSD isoforms which act either as reductases or oxidases to convert potent steroid hormones into their cognate inactive metabolites, or vice-versa. In this manner, HSDs can function as molecular switches to regulate steroid hormone action. Because these HSDs show tissue-specific expression, inhibitors of these enzymes are predicted to cause tissue-specific responses to steroid hormones. These inhibitors would represent a new class of therapeutics called 'selective intracrine modulators' (SIMs). SIMs are expected to have the same tissue-specific effects as selective steroid receptor modulators but a different mode of action as their effects are enzyme- and not receptor-mediated. HSDs responsible for these interconversions belong to two protein superfamilies: the short-chain dehydrogenases/reductases; and the aldo-keto reductases. Crystal structures exist for HSDs in both families, making rational design of SIMs a reality. Broad-based criteria have been established which must be fulfilled to validate each HSD isoform as a potential SIM target.

PubMed Disclaimer

Publication types