Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 May 23;998(1-2):201-11.
doi: 10.1016/s0021-9673(03)00524-7.

Identification of aroma active compounds in orange essence oil using gas chromatography-olfactometry and gas chromatography-mass spectrometry

Affiliations

Identification of aroma active compounds in orange essence oil using gas chromatography-olfactometry and gas chromatography-mass spectrometry

Aslaug Högnadóttir et al. J Chromatogr A. .

Abstract

Using GC-MS and GC-flame ionization detection (FID)/olfactometry, 95 volatile components were detected in orange essence oil, of which 55 were aroma active. In terms of FID peak area the most abundant compounds were: limonene, 94.5%; myrcene, 1%; valencene, 0.8%; linalool, 0.7%, and octanal, decanal, and ethyl butyrate, 0.3% each. One hundred percent of the aroma activity was generated by slightly more than 4% of the total volatiles. The most intense aromas were produced by octanal, wine lactone, linalool, decanal, beta-ionone, citronellal, and beta-sinensal. Potent aroma components reported for the first time in orange essence oil include: E-2-octenal, 1-octen-3-ol, Z-4-decenal, E,E-2,4-nonadienal, guaiacol, gamma-octalactone, and m-cresol. Over 20 compounds were identified for the first time in orange essence oil using MS, however, most did not exhibit aroma activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources