Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jul-Aug;14(4):728-37.
doi: 10.1021/bc020026a.

Artificial metalloglycoclusters: compact saccharide shell to induce high lectin affinity as well as strong luminescence

Affiliations
Comparative Study

Artificial metalloglycoclusters: compact saccharide shell to induce high lectin affinity as well as strong luminescence

Teruaki Hasegawa et al. Bioconjug Chem. 2003 Jul-Aug.

Abstract

Tris-bipyridine ferrous and ruthenium complexes carrying various saccharide appendages have been investigated to develop sensory systems for monitoring saccharide-binding phenomena. Ferrous O-glycoclusters having spacer moieties inserted between saccharide appendages and the complex core showed enhanced affinities to lectins, but ferrous N-glycoclusters, in which the saccharide-appendages are directly linked to the complex core via amide linkage, had low lectin-affinities. Molecular dynamics calculation indicated that the O-glycoclusters have flexible and densely packed saccharide clusters, in contrast to the octahedrally fixed saccharide arrays of N-glycoclusters. Flexibility of saccharide clusters is essential for their enhanced affinity, probably to induce conformational change to fit the recognition sites of lectins. According to these insights, ruthenium O-glycoclusters have been designed as luminescence biosensors. The ruthenium complexes carrying alpha-manno clusters exhibited excellent affinities (IC(min) = 9.0 x 10(-)(8) M) to concanavalin A (ConA). It is suggested from conformational analysis that densely packed mannoclusters can be fit properly to the recognition site of ConA. The binding was enthalpicaly driven (deltaH degrees = -21.8 kcal/mol). This binding behavior is quite similar to that of 1-3/1-6 trimannoside to ConA. They have strongly amplified luminescence (Phi(em) = 0.15), and their luminescence intensities were changed (approximately 40%) upon binding to the specific lectins. The ruthenium glycoclusters can be a suitable sensory system for saccharide-binding phenomena.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources