Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Aug;49(3):807-21.
doi: 10.1046/j.1365-2958.2003.03599.x.

Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus

Affiliations
Free article
Comparative Study

Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus

Makoto Kuroda et al. Mol Microbiol. 2003 Aug.
Free article

Abstract

DNA microarray covering the whole genome of Staphylococcus aureus strain N315 was prepared to investigate transcription profiles. The microarray analyses revealed that vancomycin induces transcription of 139 genes. Forty-six genes among them failed to be induced in the vraSR null mutant KVR. Part of the genes regulated by VraSR system is associated with cell-wall biosynthesis, such as PBP2, SgtB and MurZ. Other cell-wall synthesis inhibitors also induced VraSR, suggesting that the sensor kinase VraS responds to the damage of cell-wall structure or inhibition of cell-wall biosynthesis. Additionally, the vraSR null mutants derived from hetero- and homo-methicillin-resistant S. aureus showed significant decrease of resistance against teicoplanin, beta-lactam, bacitracin and fosfomycin but not of D-cycloserine and levofloxacin. The observation strongly indicates that VraSR constitutes a positive regulator of cell-wall peptidoglycan synthesis, and that is deeply involved in the expression of beta-lactam and glycopeptide resistance in S. aureus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources