Exploring potential energy surfaces for chemical reactions: an overview of some practical methods
- PMID: 12868114
- DOI: 10.1002/jcc.10231
Exploring potential energy surfaces for chemical reactions: an overview of some practical methods
Abstract
Potential energy surfaces form a central concept in the application of electronic structure methods to the study of molecular structures, properties, and reactivities. Recent advances in tools for exploring potential energy surfaces are surveyed. Methods for geometry optimization of equilibrium structures, searching for transition states, following reaction paths and ab initio molecular dynamics are discussed. For geometry optimization, topics include methods for large molecules, QM/MM calculations, and simultaneous optimization of the wave function and the geometry. Path optimization methods and dynamics based techniques for transition state searching and reaction path following are outlined. Developments in the calculation of ab initio classical trajectories in the Born-Oppenheimer and Car-Parrinello approaches are described.
Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1514-1527, 2003
Similar articles
-
Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.J Chem Phys. 2004 Jul 1;121(1):89-100. doi: 10.1063/1.1757436. J Chem Phys. 2004. PMID: 15260525
-
Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.J Chem Phys. 2008 Jan 21;128(3):034105. doi: 10.1063/1.2816557. J Chem Phys. 2008. PMID: 18205486
-
Towards accurate ab initio QM/MM calculations of free-energy profiles of enzymatic reactions.J Phys Chem B. 2006 Feb 16;110(6):2934-41. doi: 10.1021/jp057109j. J Phys Chem B. 2006. PMID: 16471904
-
New insights on reaction dynamics from formaldehyde photodissociation.Phys Chem Chem Phys. 2006 Jan 21;8(3):321-32. doi: 10.1039/b512847c. Epub 2005 Oct 31. Phys Chem Chem Phys. 2006. PMID: 16482274 Review.
-
Theoretical bioinorganic chemistry: the electronic structure makes a difference.Curr Opin Chem Biol. 2007 Apr;11(2):134-41. doi: 10.1016/j.cbpa.2007.02.026. Epub 2007 Mar 8. Curr Opin Chem Biol. 2007. PMID: 17349817 Review.
Cited by
-
Evaluation of antioxidant properties of lycopene isomers using density functional theory.J Mol Model. 2025 Jun 4;31(7):184. doi: 10.1007/s00894-025-06399-4. J Mol Model. 2025. PMID: 40465025
-
CoeffNet: predicting activation barriers through a chemically-interpretable, equivariant and physically constrained graph neural network.Chem Sci. 2024 Jan 22;15(8):2923-2936. doi: 10.1039/d3sc04411d. eCollection 2024 Feb 22. Chem Sci. 2024. PMID: 38404391 Free PMC article.
-
Implementation and performance of the artificial force induced reaction method in the GRRM17 program.J Comput Chem. 2018 Feb 5;39(4):233-251. doi: 10.1002/jcc.25106. Epub 2017 Nov 14. J Comput Chem. 2018. PMID: 29135034 Free PMC article.
-
Technologies for investigating single-molecule chemical reactions.Natl Sci Rev. 2024 Jul 9;11(8):nwae236. doi: 10.1093/nsr/nwae236. eCollection 2024 Aug. Natl Sci Rev. 2024. PMID: 39224448 Free PMC article. Review.
-
Quantum Chemical Calculations to Trace Back Reaction Paths for the Prediction of Reactants.JACS Au. 2022 Apr 22;2(5):1181-1188. doi: 10.1021/jacsau.2c00157. eCollection 2022 May 23. JACS Au. 2022. PMID: 35647604 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources