Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug;64(2):365-72.
doi: 10.1124/mol.64.2.365.

Cholesterol antagonizes ethanol potentiation of human brain BKCa channels reconstituted into phospholipid bilayers

Affiliations

Cholesterol antagonizes ethanol potentiation of human brain BKCa channels reconstituted into phospholipid bilayers

John J Crowley et al. Mol Pharmacol. 2003 Aug.

Abstract

The activity of large conductance, Ca2+-sensitive K+ (BKCa) channels, known to control neuronal excitability, is increased by ethanol (EtOH) exposure. Moreover, brain cholesterol (CHS) is elevated after chronic exposure to EtOH, suggesting that membrane CHS may play a role in drug tolerance. Here, we use BKCa channels from human brain (hslo subunits), reconstituted into 1-palmitoyl-2-oleoyl phosphatidylethanolamine/1-palmitoyl-2-oleoyl phosphatidylserine (POPS) bilayers, to examine CHS modulation of EtOH sensitivity. Acute exposure to clinically relevant EtOH levels increases channel activity without modifying conductance. In this minimal system, increases in CHS content within the range found in neuronal membranes lead to progressive antagonism of EtOH action. Furthermore, CHS inhibits basal channel activity with an affinity similar to that of CHS blunting of the alcohol effect. Modification of channel gating by either EtOH or CHS is reduced dramatically by removal of POPS from the bilayer, suggesting a common mechanism(s) of action. Indeed, channel dwell-time analysis indicates that CHS and EtOH exert opposite actions on the stability of channel closed states. However, each agent also acts on distinct dwell states not mirrored by the other, which contribute to the opposite effects of CHS and EtOH on channel gating.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources