Single-molecule transition-state analysis of RNA folding
- PMID: 12869691
- PMCID: PMC170913
- DOI: 10.1073/pnas.1133280100
Single-molecule transition-state analysis of RNA folding
Abstract
How RNA molecules fold into functional structures is a problem of great significance given the expanding list of essential cellular RNA enzymes and the increasing number of applications of RNA in biotechnology and medicine. A critical step toward solving the RNA folding problem is the characterization of the associated transition states. This is a challenging task in part because the rugged energy landscape of RNA often leads to the coexistence of multiple distinct structural transitions. Here, we exploit single-molecule fluorescence spectroscopy to follow in real time the equilibrium transitions between conformational states of a model RNA enzyme, the hairpin ribozyme. We clearly distinguish structural transitions between effectively noninterchanging sets of unfolded and folded states and characterize key factors defining the transition state of an elementary folding reaction where the hairpin ribozyme's two helical domains dock to make several tertiary contacts. Our single-molecule experiments in conjunction with site-specific mutations and metal ion titrations show that the two RNA domains are in a contact or close-to-contact configuration in the transition state even though the native tertiary contacts are at most partially formed. Such a compact transition state without well formed tertiary contacts may be a general property of elementary RNA folding reactions.
Figures






Similar articles
-
The linkage between magnesium binding and RNA folding.J Mol Biol. 2002 Apr 5;317(4):507-21. doi: 10.1006/jmbi.2002.5422. J Mol Biol. 2002. PMID: 11955006
-
Correlating structural dynamics and function in single ribozyme molecules.Science. 2002 May 24;296(5572):1473-6. doi: 10.1126/science.1069013. Science. 2002. PMID: 12029135
-
Fast folding mutants of the Tetrahymena group I ribozyme reveal a rugged folding energy landscape.J Mol Biol. 1998 Aug 28;281(4):609-20. doi: 10.1006/jmbi.1998.1960. J Mol Biol. 1998. PMID: 9710534
-
Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer.Methods. 2001 Sep;25(1):19-30. doi: 10.1006/meth.2001.1212. Methods. 2001. PMID: 11558994 Review.
-
Single-molecule RNA folding.Acc Chem Res. 2005 Jul;38(7):566-73. doi: 10.1021/ar040142o. Acc Chem Res. 2005. PMID: 16028891 Review.
Cited by
-
Long-range tertiary interactions in single hammerhead ribozymes bias motional sampling toward catalytically active conformations.RNA. 2010 Dec;16(12):2414-26. doi: 10.1261/rna.1829110. Epub 2010 Oct 4. RNA. 2010. PMID: 20921269 Free PMC article.
-
Salt effect on thermodynamics and kinetics of a single RNA base pair.RNA. 2020 Apr;26(4):470-480. doi: 10.1261/rna.073882.119. Epub 2020 Jan 27. RNA. 2020. PMID: 31988191 Free PMC article.
-
Recursively constructing analytic expressions for equilibrium distributions of stochastic biochemical reaction networks.J R Soc Interface. 2017 May;14(130):20170157. doi: 10.1098/rsif.2017.0157. J R Soc Interface. 2017. PMID: 28566513 Free PMC article.
-
What can one learn from two-state single-molecule trajectories?Biophys J. 2005 Jun;88(6):3780-3. doi: 10.1529/biophysj.104.055905. Epub 2005 Mar 11. Biophys J. 2005. PMID: 15764653 Free PMC article.
-
Thermodynamic and kinetic aspects of RNA pulling experiments.Biophys J. 2005 May;88(5):3224-42. doi: 10.1529/biophysj.104.045344. Epub 2005 Mar 11. Biophys J. 2005. PMID: 15764661 Free PMC article.
References
-
- Doudna, J. A. & Cech, T. R. (2002) Nature 418, 222–228. - PubMed
-
- Moore, P. B. & Steitz, T. A. (2002) Nature 418, 229–235. - PubMed
-
- Collins, C. A. & Guthrie, C. (2000) Nat. Struct. Biol. 7, 850–854. - PubMed
-
- Valadkhan, S. & Manley, J. L. (2002) Nat. Struct. Biol. 9, 498–499. - PubMed
-
- Famulok, M. & Verma, S. (2002) Trends Biotechnol. 20, 462–466. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources