Ribozyme speed limits
- PMID: 12869701
- PMCID: PMC1370456
- DOI: 10.1261/rna.5680603
Ribozyme speed limits
Abstract
The speed at which RNA molecules decompose is a critical determinant of many biological processes, including those directly involved in the storage and expression of genetic information. One mechanism for RNA cleavage involves internal phosphoester transfer, wherein the 2'-oxygen atom carries out an SN2-like nucleophilic attack on the adjacent phosphorus center (transesterification). In this article, we discuss fundamental principles of RNA transesterification and define a conceptual framework that can be used to assess the catalytic power of enzymes that cleave RNA. We deduce that certain ribozymes and deoxyribozymes, like their protein enzyme counterparts, can bring about enormous rate enhancements.
Figures






Similar articles
-
A common speed limit for RNA-cleaving ribozymes and deoxyribozymes.RNA. 2003 Aug;9(8):949-57. doi: 10.1261/rna.5670703. RNA. 2003. PMID: 12869706 Free PMC article.
-
RNA folding and catalysis.Genetica. 1999;106(1-2):95-102. doi: 10.1023/a:1003733012815. Genetica. 1999. PMID: 10710715 Review.
-
Importance of specific purine-pyrimidine amino and hydroxyl groups for efficient cleavage by a hammerhead ribozyme.Nucleic Acids Symp Ser. 1993;(29):175-6. Nucleic Acids Symp Ser. 1993. PMID: 8247757
-
Ribozyme catalysis via orbital steering.J Mol Biol. 2001 Aug 31;311(5):989-99. doi: 10.1006/jmbi.2001.4886. J Mol Biol. 2001. PMID: 11531334
-
Ribozymes: from mechanistic studies to applications in vivo.J Biochem. 1995 Aug;118(2):251-8. doi: 10.1093/oxfordjournals.jbchem.a124899. J Biochem. 1995. PMID: 8543555 Review.
Cited by
-
Coupling between conformational dynamics and catalytic function at the active site of the lead-dependent ribozyme.RNA. 2018 Nov;24(11):1542-1554. doi: 10.1261/rna.067579.118. Epub 2018 Aug 15. RNA. 2018. PMID: 30111534 Free PMC article.
-
Chemistry, structure and function of approved oligonucleotide therapeutics.Nucleic Acids Res. 2023 Apr 11;51(6):2529-2573. doi: 10.1093/nar/gkad067. Nucleic Acids Res. 2023. PMID: 36881759 Free PMC article. Review.
-
Detection of Low-Abundance Metabolites in Live Cells Using an RNA Integrator.Cell Chem Biol. 2019 Apr 18;26(4):471-481.e3. doi: 10.1016/j.chembiol.2019.01.005. Epub 2019 Feb 14. Cell Chem Biol. 2019. PMID: 30773480 Free PMC article.
-
Phosphodiester models for cleavage of nucleic acids.Beilstein J Org Chem. 2018 Apr 10;14:803-837. doi: 10.3762/bjoc.14.68. eCollection 2018. Beilstein J Org Chem. 2018. PMID: 29719577 Free PMC article. Review.
-
Crystal structure of Pistol, a class of self-cleaving ribozyme.Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1021-1026. doi: 10.1073/pnas.1611191114. Epub 2017 Jan 17. Proc Natl Acad Sci U S A. 2017. PMID: 28096403 Free PMC article.
References
-
- Adams, R.L.P., Knowler, J.T., and Leader, D.P. 1992. Degradation and modification of nucleic acids. In The biochemistry of the nucleic acids, 11th ed., pp. 97–133. Chapman & Hall, New York.
-
- Admiraal, S.J. and Herschlag, D. 1995. Mapping the transition state for ATP hydrolysis: Implications for enzymatic catalysis. Chem. Biol. 2: 729–739. - PubMed
-
- Almer, H. and Strömberg, R. 1996. Base catalysis and leaving group dependence in intramolecular alcoholysis of uridine 3′-(aryl phosphorothioate)s. J. Am. Chem. Soc. 118: 7921–7928.
-
- Bacher, J.E. and Kauzmann, W. 1952. The kinetics of hydrolysis of ribonucleic acid. J. Am. Chem. Soc. 74: 3779–3786.
-
- Benkovic, S.J. and Schray, K.J. 1970. Chemical basis of biological phosphoryl transfer. In The enzymes, 3rd ed., Vol. VIII (ed. P.D. Boyer), pp. 201–238, Academic Press, New York.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources