Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure
- PMID: 12870701
Mechanistic formalism for membrane transport generated by osmotic and mechanical pressure
Abstract
Since the physical interpretation of practical Kedem-Katchalsky (KK) equations is not clear, we consider an alternative, mechanistic approach to membrane transport generated by osmotic and hydraulic pressure. We study a porous membrane with randomly distributed pore sizes (radii). We postulate that reflection coefficient (sigma p) of a single pore may equal 1 or 0. From this postulate we derive new (mechanistic) transport equations. Their advantage is in clear physical interpretation and since we show they are equivalent to the KK equations, the interpretation of the latter became clearer as well. Henceforth the equations allow clearer and more detailed interpretation of results concerning membrane mass transport. This is especially important from the point of view of biophysical studies on permeation processes across biological membranes, cell membranes including.
Similar articles
-
Mechanistic approach to membrane mass transport processes (mini review).Cell Mol Biol Lett. 2002;7(4):983-93. Cell Mol Biol Lett. 2002. PMID: 12511967 Review.
-
On the derivation of the Kargol's mechanistic transport equations from the Kedem-Katchalsky phenomenological equations.Gen Physiol Biophys. 2005 Jun;24(2):247-58. Gen Physiol Biophys. 2005. PMID: 16118476
-
Mechanistic equations for membrane substance transport and their identity with Kedem-Katchalsky equations.Biophys Chem. 2003 Jan 21;103(2):117-27. doi: 10.1016/s0301-4622(02)00250-8. Biophys Chem. 2003. PMID: 12568935
-
Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism.Cryobiology. 1998 Dec;37(4):271-89. doi: 10.1006/cryo.1998.2135. Cryobiology. 1998. PMID: 9917344 Review.
-
[New method of derivation of practical Kedem-Katchalsky membrane transport equations].Polim Med. 2005;35(4):19-24. Polim Med. 2005. PMID: 16619794 Polish.
Cited by
-
Equilibrium and dynamic osmotic behaviour of aqueous solutions with varied concentration at constant and variable volume.ScientificWorldJournal. 2013 Dec 26;2013:876897. doi: 10.1155/2013/876897. eCollection 2013. ScientificWorldJournal. 2013. PMID: 24459448 Free PMC article.
-
The Rr Form of the Kedem-Katchalsky-Peusner Model Equations for Description of the Membrane Transport in Concentration Polarization Conditions.Entropy (Basel). 2020 Aug 1;22(8):857. doi: 10.3390/e22080857. Entropy (Basel). 2020. PMID: 33286628 Free PMC article.
-
Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation.Biophys J. 2009 Apr 8;96(7):2559-71. doi: 10.1016/j.bpj.2008.12.3929. Biophys J. 2009. PMID: 19348741 Free PMC article.
-
Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation.Eur Biophys J. 2010 Oct;39(11):1547-56. doi: 10.1007/s00249-010-0612-0. Epub 2010 Jun 19. Eur Biophys J. 2010. PMID: 20563574 Free PMC article.
-
Evaluation of Transport Properties and Energy Conversion of Bacterial Cellulose Membrane Using Peusner Network Thermodynamics.Entropy (Basel). 2022 Dec 20;25(1):3. doi: 10.3390/e25010003. Entropy (Basel). 2022. PMID: 36673144 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources