Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Aug 14;137(1):97-106.
doi: 10.1016/s1569-9048(03)00138-1.

Elastohydrodynamic separation of pleural surfaces during breathing

Affiliations

Elastohydrodynamic separation of pleural surfaces during breathing

Andrew Gouldstone et al. Respir Physiol Neurobiol. .

Abstract

To examine effects of lung motion on the separation of pleural surfaces during breathing, we modeled the pleural space in two dimensions as a thin layer of fluid separating a stationary elastic solid and a sliding flat solid surface. The undeformed elastic solid contained a series of bumps, to represent tissue surface features, introducing unevenness in fluid layer thickness. We computed the extent of deformation of the solid as a function of sliding velocity, solid elastic modulus, and bump geometry (wavelength and amplitude). For physiological values of the parameters, significant deformation occurs (i.e. bumps are 'flattened') promoting less variation in fluid thickness and decreased fluid shear stress. In addition, deformation is persistent; bumps of sufficient wavelength, once deformed, require a recovery time longer than a typical breath-to-breath interval to return near their undeformed configuration. These results suggest that in the pleural space during normal breathing, separation of pleural surfaces is promoted by the reciprocating sliding of lung and chest wall.

PubMed Disclaimer

Publication types

LinkOut - more resources