Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct 3;278(40):39155-65.
doi: 10.1074/jbc.M306409200. Epub 2003 Jul 18.

Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate

Affiliations
Free article

Metabolic network control of oxidative phosphorylation: multiple roles of inorganic phosphate

Salil Bose et al. J Biol Chem. .
Free article

Abstract

Phosphate (Pi) is a putative cytosolic signaling molecule in the regulation of oxidative phosphorylation. Here, by using a multiparameter monitoring system, we show that Pi controls oxidative phosphorylation in a balanced fashion, modulating both the generation of useful potential energy and the formation of ATP by F1F0-ATPase in heart and skeletal muscle mitochondria. In these studies the effect of Pi was determined on the mitochondria [NADH], NADH generating capacity, matrix pH, membrane potential, oxygen consumption, and cytochrome reduction level. Pi enhanced NADH generation and was obligatory for electron flow under uncoupled conditions. Pi oxidized cytochrome b (cyto-b) and reduced cytochrome c (cyto-c), potentially improving the coupling between the NADH free energy and the proton motive force. The apparent limitation in reducing equivalent flow between cyto-b and cyto-c in the absence of Pi was confirmed in the intact heart by using optical spectroscopic techniques under conditions with low cytosolic [Pi]. These results demonstrate that Pi signaling results in the balanced modulation of oxidative phosphorylation, by influencing both deltaGH+ generation and ATP production, which may contribute to the energy metabolism homeostasis observed in intact systems.

PubMed Disclaimer

MeSH terms

LinkOut - more resources