Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul 15;63(14):3860-5.

Glucosylceramide synthase and its functional interaction with RTN-1C regulate chemotherapeutic-induced apoptosis in neuroepithelioma cells

Affiliations
  • PMID: 12873973

Glucosylceramide synthase and its functional interaction with RTN-1C regulate chemotherapeutic-induced apoptosis in neuroepithelioma cells

Federica Di Sano et al. Cancer Res. .

Abstract

Glucosylceramide synthase (GCS), the key enzyme in the biosynthesis of glycosphingolipids, has been implicated in many biological phenomena, including multidrug resistance. GCS inhibition, by both antisense and the specific inhibitor (D-threo)-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), results in a drastic decrease of apoptosis induced by the p53-independent chemotherapeutic agent N-(4-hydroxyphenyl)retinamide in neuroepithelioma cells. By using the yeast two-hybrid system, we have identified a member of the reticulon (RTN) family (RTN-1C) as the major GCS-protein partner. Interestingly, RTN-1C not only interacts with GCS at Golgi/ER interface but also modulates its catalytic activity in situ. In fact, overexpression of RTN-1C sensitizes CHP-100 cells to fenretinide-induced apoptosis. These findings demonstrate a novel p53-independent pathway of apoptosis regulated by Golgi/endoplasmic reticulum protein interactions, which is relevant for cancer combined therapy.

PubMed Disclaimer

Publication types

MeSH terms