Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Aug 1;171(3):1526-33.
doi: 10.4049/jimmunol.171.3.1526.

TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells

Affiliations
Comparative Study

TRAIL induces apoptosis and inflammatory gene expression in human endothelial cells

Jie Hui Li et al. J Immunol. .

Abstract

Human TRAIL can efficiently kill tumor cells in vitro and kill human tumor xenografts in mice with little effect on normal mouse cells or tissues. The effects of TRAIL on normal human tissues have not been described. In this study, we report that endothelial cells (EC), isolated from human umbilical veins or human dermal microvessels, express death domain-containing TRAIL-R1 and -R2. Incubation with TRAIL for 15 h causes approximately 30% of cultured EC to die, as assessed by propidium iodide uptake. Death is apoptotic, as assessed by Annexin V staining, 4',6'-diamidino-2-phenylindole staining, and DNA fragment ELISA. EC death is increased by cotreatment with cycloheximide but significantly reduced by caspase inhibitors or transduced dominant-negative Fas-associated death domain protein. In surviving cells, TRAIL activates NF-kappaB, induces expression of E-selectin, ICAM-1, and IL-8, and promotes adhesion of leukocytes. Injection of TRAIL into human skin xenografts promotes focal EC injury accompanied by limited neutrophil infiltration. These data suggest that TRAIL is an inducer of tissue injury in humans, an outcome that may influence antitumor therapy with TRAIL.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources