Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct;73(4):332-8.
doi: 10.1007/s00223-002-2130-2. Epub 2003 Jul 24.

Vitamin D receptor gene polymorphism predicts height and bone size, rather than bone density in children and young adults

Affiliations

Vitamin D receptor gene polymorphism predicts height and bone size, rather than bone density in children and young adults

I M van der Sluis et al. Calcif Tissue Int. 2003 Oct.

Abstract

Peak bone mass is considered to be under strong genetic control. We studied the association among anthropometry, bone density and vitamin D receptor (VDR) genotype in an ethnically homogeneous group of 148 Caucasian children and young adults. Bone density was measured by dual energy X-ray absorptiometry (DXA) and VDR genotype was determined by a direct haplotyping procedure of the BsmI, ApaI, and TaqI restriction fragment length polymorphisms. A second DXA measurement was made after approximately 4 years. Results are expressed as age- and sex-adjusted standard deviation scores (SDS). Previously, the collagen IA1 Sp1 polymorphism was studied in this population. We found VDR genotype to be associated with a 0.4 SDS increased height per allele copy of haplotype '3' (P = 0.04) and a 0.4 SDS increased width of the lumbar vertebral body in the haplotype '3' allele carriers (P = 0.05). We observed a trend towards a 0.3 SDS decreased bone mineral apparent density of lumbar spine (BMAD) per copy of haplotype '3' allele (P = 0.10). In contrast, no association with areal bone mineral density (BMD) was observed. In the follow-up analyses, no differences in height or bone gain among the VDR genotypes were demonstrated. By combining the risk alleles of VDR and collagen IA1 Sp1 genotype, an additive genotype effect on height (P = 0.006) and vertebral body width (P = 0.001) was found. In this exploratory study we found VDR genotype to be associated with frame size and BMAD. The VDR genotype effects on stature and bone size seem to neutralize the effect on areal BMD.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources