Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2003 Jul-Aug;28(4):357-64.

Composite cure and shrinkage associated with high intensity curing light

Affiliations
  • PMID: 12877420
Comparative Study

Composite cure and shrinkage associated with high intensity curing light

Adrian U J Yap et al. Oper Dent. 2003 Jul-Aug.

Abstract

This study investigated the effectiveness of cure and post-gel shrinkage of three visible light-cured composite resins (In Ten-S [IT], Ivoclar Vivadent; Z100 [ZO], 3M-ESPE; Tetric Ceram [TC], Ivoclar Vivadent) when polymerized with a very high intensity (1296 +/- 2 mW/cm2) halogen light (Astralis 10, Ivoclar Vivadent) for 10 seconds. Irradiation with a conventional (494 +/- 3 mW/cm2) halogen light (Spectrum, Dentsply) for 40 seconds was used for comparison. The effectiveness of cure was assessed by computing the hardness gradient between the top and bottom surfaces of 2-mm composite specimens after curing. A strain-monitoring device was used to measure the linear polymerization shrinkage associated with the various composites and curing lights. A sample size of five was used for both experiments. Data was analyzed using ANOVA/Scheffe's post-hoc and Independent Samples t-tests at significance level 0.05. Results showed that the effect of the curing method on the effectiveness of cure and shrinkage was material-dependent. Polymerization of IT and TC with Spectrum for 40 seconds resulted in significantly more effective cure than polymerization with Astralis for 10 seconds. Polymerization of ZO with Spectrum for 40 seconds resulted in significantly more shrinkage than polymerization with Astralis for 10 seconds. In view of the substantial time saving, using high intensity lights may be a viable method to polymerize composites.

PubMed Disclaimer

Publication types