Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003 Aug 15;61(6):514-32.
doi: 10.1002/jemt.10375.

Osteoclast diseases

Affiliations
Review

Osteoclast diseases

Miep H Helfrich. Microsc Res Tech. .

Abstract

Osteoclasts are the only cells capable of resorbing mineralised bone, dentine and cartilage. Osteoclasts act in close concert with bone forming osteoblasts to model the skeleton during embryogenesis and to remodel it during later life. A number of inherited human conditions are known that are primarily caused by a defect in osteoclasts. Most of these are rare monogenic disorders, but others, such as the more common Paget's disease, are complex diseases, where genetic and environmental factors combine to result in the abnormal osteoclast phenotype. Where the genetic defect gives rise to ineffective osteoclasts, such as in osteopetrosis and pycnodysostosis, the result is the presence of too much bone. However, the phenotype in many osteoclast diseases is a combination of osteosclerosis with osteolytic lesions. In such conditions, the primary defect is hyperactivity of osteoclasts, compensated by a secondary increase in osteoblast activity. Rapid progress has been made in recent years in the identification of the causative genes and in the understanding of the biological role of the proteins encoded. This review discusses the known osteoclast diseases with particular emphasis on the genetic causes and the resulting osteoclast phenotype. These human diseases highlight the critical importance of specific proteins or signalling pathways in osteoclasts.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources