Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Nov;285(5):H2150-7.
doi: 10.1152/ajpheart.00966.2002. Epub 2003 Jul 24.

Regulation of nitric oxide-dependent vasodilation in coronary arteries of estrogen receptor-alpha-deficient mice

Affiliations
Free article

Regulation of nitric oxide-dependent vasodilation in coronary arteries of estrogen receptor-alpha-deficient mice

Judy M Muller-Delp et al. Am J Physiol Heart Circ Physiol. 2003 Nov.
Free article

Abstract

Estrogen has been shown to increase endothelium-dependent vasodilation and expression of endothelial nitric oxide (NO) synthase (eNOS); however, the role of estrogen receptors in mediating estrogen effects on endothelial function remains to be elucidated. The purpose of this study was to test the hypothesis that estrogen modulates NO-dependent vasodilation of coronary arteries through its action on estrogen receptor-alpha (ER-alpha) to increase protein levels of eNOS and Cu/Zn superoxide dismutase (SOD-1). Vasodilation to acetylcholine (ACh) and sodium nitroprusside was assessed in isolated coronary arteries from intact and ovariectomized female wild-type (WT) and ER-alpha knockout (ERalphaKO) mice. Protein levels for eNOS and SOD-1 were also evaluated. Vasodilation to ACh was not significantly altered in ERalphaKO mice compared with WT mice. Ovariectomy reduced responsiveness to ACh in ERalphaKO mice but not WT mice. Responses to sodium nitroprusside were not altered by disruption of ER-alpha or by ovariectomy. Supplementation with estrogen restored ACh-induced vasodilation in ovariectomized ERalphaKO mice. eNOS protein was reduced in ERalphaKO mice compared with WT mice. Ovariectomy caused a further reduction in eNOS protein in ERalphaKO mice, but this reduction was reversed by estrogen treatment. SOD-1 protein levels were increased by disruption of ER-alpha. Ovariectomy reduced SOD-1 protein in ERalphaKO mice, but this reduction was partially reversed by estrogen replacement. These results suggest that estrogen modulation of eNOS protein content is mediated in part through ER-alpha. NO-dependent responses are preserved in ERalphaKO mice, possibly through increased SOD-1 expression and enhanced bioavailability of NO.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources