Transcriptional control of multidrug resistance in the yeast Saccharomyces
- PMID: 12882520
- DOI: 10.1016/s0079-6603(03)01008-0
Transcriptional control of multidrug resistance in the yeast Saccharomyces
Abstract
A major problem in chemotherapeutic treatment of many pathological conditions including cancer and fungal infections is the development of a multidrug-resistant state in the target cell. Saccharomyces cerevisiae cells can be isolated that have single genetic alterations that cause the resulting mutant strains to become tolerant of a wide range of compounds that would otherwise be toxic. These mutant cells are referred to as having a pleiotropic drug-resistant (Pdr) phenotype. Studies of these Pdr cells have demonstrated that mutations either within genes encoding transcriptional regulators or in their regulatory inputs lead to overexpression of downstream transporter proteins with associated multidrug resistance. This review is aimed at providing a framework for understanding the networks modulating expression of PDR genes in S. cerevisiae.
Similar articles
-
The ATP-binding cassette multidrug transporter Snq2 of Saccharomyces cerevisiae: a novel target for the transcription factors Pdr1 and Pdr3.Mol Microbiol. 1996 Apr;20(1):109-17. doi: 10.1111/j.1365-2958.1996.tb02493.x. Mol Microbiol. 1996. PMID: 8861209
-
Clustered amino acid substitutions in the yeast transcription regulator Pdr3p increase pleiotropic drug resistance and identify a new central regulatory domain.Mol Gen Genet. 1997 Oct;256(4):397-405. doi: 10.1007/s004380050583. Mol Gen Genet. 1997. PMID: 9393437
-
"Soft" lysosomotropic compounds as new substrates of the yeast PDR network.Folia Microbiol (Praha). 1998;43(2):214-6. doi: 10.1007/BF02816520. Folia Microbiol (Praha). 1998. PMID: 9721619 No abstract available.
-
Yeast multidrug resistance: the PDR network.J Bioenerg Biomembr. 1995 Feb;27(1):71-6. doi: 10.1007/BF02110333. J Bioenerg Biomembr. 1995. PMID: 7629054 Review.
-
Retrograde regulation of multidrug resistance in Saccharomyces cerevisiae.Gene. 2005 Jul 18;354:15-21. doi: 10.1016/j.gene.2005.03.019. Gene. 2005. PMID: 15896930 Review.
Cited by
-
Sphingolipids and mitochondrial function in budding yeast.Biochim Biophys Acta. 2014 Oct;1840(10):3131-7. doi: 10.1016/j.bbagen.2014.06.015. Epub 2014 Jun 25. Biochim Biophys Acta. 2014. PMID: 24973565 Free PMC article.
-
The Chromone Alkaloid, Rohitukine, Affords Anti-Cancer Activity via Modulating Apoptosis Pathways in A549 Cell Line and Yeast Mitogen Activated Protein Kinase (MAPK) Pathway.PLoS One. 2015 Sep 25;10(9):e0137991. doi: 10.1371/journal.pone.0137991. eCollection 2015. PLoS One. 2015. PMID: 26405812 Free PMC article.
-
Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae.Eukaryot Cell. 2004 Aug;3(4):880-92. doi: 10.1128/EC.3.4.880-892.2004. Eukaryot Cell. 2004. PMID: 15302821 Free PMC article.
-
Multidrug resistance in fungi.Eukaryot Cell. 2007 Nov;6(11):1933-42. doi: 10.1128/EC.00254-07. Epub 2007 Sep 14. Eukaryot Cell. 2007. PMID: 17873085 Free PMC article. Review. No abstract available.
-
Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.BMC Genomics. 2010 Nov 24;11:660. doi: 10.1186/1471-2164-11-660. BMC Genomics. 2010. PMID: 21106074 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Molecular Biology Databases