Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Oct 17;278(42):41552-6.
doi: 10.1074/jbc.M305717200. Epub 2003 Jul 25.

A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency

Affiliations
Free article

A novel gamma-hydroxybutyrate dehydrogenase: identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency

Kevin E Breitkreuz et al. J Biol Chem. .
Free article

Abstract

In plants, gamma-aminobutyrate (GABA), a non-protein amino acid, accumulates rapidly in response to a variety of abiotic stresses such as oxygen deficiency. Under normoxia, GABA is catabolized to succinic semialdehyde and then to succinate with the latter reaction being catalyzed by succinic semialdehyde dehydrogenase (SSADH). Complementation of an SSADH-deficient yeast mutant with an Arabidopsis cDNA library enabled the identification of a novel cDNA (designated as AtGH-BDH for Arabidopsis thaliana gamma-hydroxybutyrate dehydrogenase), which encodes a 289-amino acid polypeptide containing an NADP-binding domain. Constitutive expression of AtGHBDH in the mutant yeast enabled growth on 20 mm GABA and significantly enhanced the cellular concentrations of gamma-hydroxybutyrate, the product of the GHDBH reaction. These data confirm that the cDNA encodes a polypeptide with GHBDH activity. Arabidopsis plants subjected to flooding-induced oxygen deficiency for up to 4 h possessed elevated concentrations of gamma-hydroxybutyrate as well as GABA and alanine. RNA expression analysis revealed that GHBDH transcription was not up-regulated by oxygen deficiency. These findings suggest that GHBDH activity is regulated by the supply of succinic semialdehyde or by redox balance. It is proposed that GHBDH and SSADH activities in plants are regulated in a complementary fashion and that GHBDH and gamma-hydroxybutyrate function in oxidative stress tolerance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data