Statistical issues and methods for meta-analysis of microarray data: a case study in prostate cancer
- PMID: 12884057
- DOI: 10.1007/s10142-003-0087-5
Statistical issues and methods for meta-analysis of microarray data: a case study in prostate cancer
Abstract
With the proliferation of related microarray studies by independent groups, a natural step in the analysis of these gene expression data is to combine the results across these studies. However, this raises a variety of issues in the analysis of such data. In this article, we discuss the statistical issues of combining data from multiple gene expression studies. This leads to more complications than those in standard meta-analyses, including different experimental platforms, duplicate spots and complex data structures. We illustrate these ideas using data from four prostate cancer profiling studies. In addition, we develop a simple approach for assessing differential expression using the LASSO method. A combination of the results and the pathway databases are then used to generate candidate biological pathways for cancer.
Similar articles
-
Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.BMC Bioinformatics. 2005 Feb 10;6:26. doi: 10.1186/1471-2105-6-26. BMC Bioinformatics. 2005. PMID: 15705192 Free PMC article.
-
A GMM-IG framework for selecting genes as expression panel biomarkers.Artif Intell Med. 2010 Feb-Mar;48(2-3):75-82. doi: 10.1016/j.artmed.2009.07.006. Epub 2009 Dec 8. Artif Intell Med. 2010. PMID: 20004087
-
An analysis of gene array data related to cell adhesion and prostate cancer.Cancer Treat Res. 2002;113:91-111. doi: 10.1007/978-1-4757-3571-0_6. Cancer Treat Res. 2002. PMID: 12613352 Review. No abstract available.
-
Noise filtering and nonparametric analysis of microarray data underscores discriminating markers of oral, prostate, lung, ovarian and breast cancer.BMC Bioinformatics. 2004 Nov 29;5:185. doi: 10.1186/1471-2105-5-185. BMC Bioinformatics. 2004. PMID: 15569388 Free PMC article.
-
Integrative biology of prostate cancer progression.Annu Rev Pathol. 2006;1:243-71. doi: 10.1146/annurev.pathol.1.110304.100047. Annu Rev Pathol. 2006. PMID: 18039115 Review.
Cited by
-
High-throughput processing and normalization of one-color microarrays for transcriptional meta-analyses.BMC Bioinformatics. 2011 Oct 18;12 Suppl 10(Suppl 10):S2. doi: 10.1186/1471-2105-12-S10-S2. BMC Bioinformatics. 2011. PMID: 22166002 Free PMC article.
-
Integrated network analysis of transcriptomic and proteomic data in psoriasis.BMC Syst Biol. 2010 Apr 8;4:41. doi: 10.1186/1752-0509-4-41. BMC Syst Biol. 2010. PMID: 20377895 Free PMC article.
-
Biomarker detection in the integration of multiple multi-class genomic studies.Bioinformatics. 2010 Feb 1;26(3):333-40. doi: 10.1093/bioinformatics/btp669. Epub 2009 Dec 4. Bioinformatics. 2010. PMID: 19965884 Free PMC article.
-
Modeling Pathway Dynamics of the Skeletal Muscle Response to Intravenous Methylprednisolone (MPL) Administration in Rats: Dosing and Tissue Effects.Front Bioeng Biotechnol. 2020 Jul 14;8:759. doi: 10.3389/fbioe.2020.00759. eCollection 2020. Front Bioeng Biotechnol. 2020. PMID: 32760706 Free PMC article.
-
Integrative analysis of multiple gene expression profiles with quality-adjusted effect size models.BMC Bioinformatics. 2005 May 27;6:128. doi: 10.1186/1471-2105-6-128. BMC Bioinformatics. 2005. PMID: 15921507 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical