Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003:15 Suppl:S30-9.
doi: 10.1002/chir.10272.

Design and synthesis of fluorescent beta-cyclodextrins for the enantioselective sensing of alpha-amino acids

Affiliations

Design and synthesis of fluorescent beta-cyclodextrins for the enantioselective sensing of alpha-amino acids

R Corradini et al. Chirality. 2003.

Abstract

Fluorescent monofunctionalized beta-cyclodextrins bearing a copper(II) binding side arm and a dansyl group (CD-NH-AA-CH(2)CH(2)NH-DNS) were designed as enantioselective sensors for unmodified alpha-amino acids. The side arm was derived from amino acid synthons (AA = L- and D-phenylalanine (1 and 2), L- and D-phenylglycine (3 and 4), L-proline (5), and L-cyclohexylglycine (6)) and was chosen in order to contain an amide, an amine, and a sulphonamide group. Enantioselectivity was evaluated by addition of copper(II) complexes of D- or L-valine and D- or L-proline. Chiral discrimination in the fluorescence response was observed in all cases, due to a ligand exchange process. The best conditions for these experiments were found to be the use of an excess (10:1) of the copper complex. The cyclodextrin 4 containing a D-phenylglycine unit was found to be poorly enantioselective, as found for 2, suggesting that the best design can be obtained by using L-amino acids. All L-amino acid containing cyclodextrins showed good enantioselectivities, some of which were higher than those already reported for 1. Other analytes related to amino acids were studied using cyclodextrins 1 and 3. Enantiomers of alpha,alpha-disubstituted amino acids, N-methylamino acids, and amino acid amides were found to be discriminated, while beta-phenylalanine and other molecules bearing a poor anchoring group at the alpha-carbon gave poor enantioselectivity. On the basis of the present data a model for the recognition process, based on the formation of ternary diastereomeric complexes, is proposed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources