Channels as taste receptors in vertebrates
- PMID: 12887980
- DOI: 10.1016/s0079-6107(03)00058-0
Channels as taste receptors in vertebrates
Abstract
Taste reception is fundamental for proper selection of food and beverages. Chemicals detected as taste stimuli by vertebrates include a large variety of substances, ranging from inorganic ions (e.g., Na(+), H(+)) to more complex molecules (e.g., sucrose, amino acids, alkaloids). Specialized epithelial cells, called taste receptor cells (TRCs), express specific membrane proteins that function as receptors for taste stimuli. Classical view of the early events in chemical detection was based on the assumption that taste substances bind to membrane receptors in TRCs without permeating the tissue. Although this model is still valid for some chemicals, such as sucrose, it does not hold for small ions, such as Na(+), that actually diffuse inside the taste tissue through ion channels. Electrophysiological, pharmacological, biochemical, and molecular biological studies have provided evidence that indeed TRCs use ion channels to reveal the presence of certain substances in foodstuff. In this review, we focus on the functional and molecular properties of ion channels that serve as receptors in taste transduction.
Similar articles
-
Chemotransduction in Necturus taste buds, a model for taste processing.Neurosci Res Suppl. 1990;12:S73-83. doi: 10.1016/0921-8696(90)90010-z. Neurosci Res Suppl. 1990. PMID: 1700850
-
Electrophysiology of Necturus taste cells.Prog Neurobiol. 2002 Feb;66(3):123-59. doi: 10.1016/s0301-0082(02)00005-9. Prog Neurobiol. 2002. PMID: 11943449 Review.
-
Cellular basis of taste reception.Curr Opin Neurobiol. 1991 Aug;1(2):198-203. doi: 10.1016/0959-4388(91)90078-l. Curr Opin Neurobiol. 1991. PMID: 1821182 Review.
-
The molecular physiology of taste transduction.Curr Opin Neurobiol. 2000 Aug;10(4):519-27. doi: 10.1016/s0959-4388(00)00118-5. Curr Opin Neurobiol. 2000. PMID: 10981623 Review.
-
Signaling mechanisms controlling taste cell function.Crit Rev Eukaryot Gene Expr. 2008;18(2):125-37. doi: 10.1615/critreveukargeneexpr.v18.i2.20. Crit Rev Eukaryot Gene Expr. 2008. PMID: 18304027 Review.
Cited by
-
PLCbeta2-independent behavioral avoidance of prototypical bitter-tasting ligands.Chem Senses. 2005 Sep;30(7):593-600. doi: 10.1093/chemse/bji053. Epub 2005 Aug 31. Chem Senses. 2005. PMID: 16135743 Free PMC article.
-
A chromosome-level genome of electric catfish (Malapterurus electricus) provided new insights into order Siluriformes evolution.Mar Life Sci Technol. 2023 Dec 14;6(1):1-14. doi: 10.1007/s42995-023-00197-8. eCollection 2024 Feb. Mar Life Sci Technol. 2023. PMID: 38433969 Free PMC article.
-
The search for mechanisms underlying the sour taste evoked by acids continues.Chem Senses. 2010 Sep;35(7):545-7. doi: 10.1093/chemse/bjq044. Epub 2010 Jul 6. Chem Senses. 2010. PMID: 20605873 Free PMC article.
-
Biochemical enrichment and biophysical characterization of a taste receptor for L-arginine from the catfish, Ictalurus puntatus.BMC Neurosci. 2004 Jul 28;5:25. doi: 10.1186/1471-2202-5-25. BMC Neurosci. 2004. PMID: 15282034 Free PMC article.
-
Expression of the voltage-gated potassium channel KCNQ1 in mammalian taste bud cells and the effect of its null-mutation on taste preferences.J Comp Neurol. 2009 Jan 20;512(3):384-98. doi: 10.1002/cne.21899. J Comp Neurol. 2009. PMID: 19006182 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources