Engineered biosynthesis of an ansamycin polyketide precursor in Escherichia coli
- PMID: 12888623
- PMCID: PMC187841
- DOI: 10.1073/pnas.1632167100
Engineered biosynthesis of an ansamycin polyketide precursor in Escherichia coli
Abstract
Ansamycins such as rifamycin, ansamitocin, and geldanamycin are an important class of polyketide natural products. Their biosynthetic pathways are especially complex because they involve the formation of 3-amino-5-hydroxybenzoic acid (AHBA) followed by backbone assembly by a hybrid nonribosomal peptide synthetase/polyketide synthase. We have reconstituted the ability to synthesize 2,6-dimethyl-3,5,7-trihydroxy-7-(3'-amino-5'-hydroxyphenyl)-2,4-heptadienoic acid (P8/1-OG), an intermediate in rifamycin biosynthesis, in an extensively manipulated strain of Escherichia coli. The parent strain, BAP1, contains the sfp phosphopantetheinyl transferase gene from Bacillus subtilis, which posttranslationally modifies polyketide synthase and nonribosomal peptide synthetase modules. AHBA biosynthesis in this host required introduction of seven genes from Amycolatopsis mediterranei, which produces rifamycin, and Actinosynnema pretiosum, which produces ansamitocin. Because the four-module RifA protein (530 kDa) from the rifamycin synthetase could not be efficiently produced in an intact form in E. coli, it was genetically split into two bimodular proteins separated by matched linker pairs to facilitate efficient inter-polypeptide transfer of a biosynthetic intermediate. A derivative of BAP1 was engineered that harbors the AHBA biosynthetic operon, the bicistronic RifA construct and the pccB and accA1 genes from Streptomyces coelicolor, which enable methylmalonyl-CoA biosynthesis. Fermentation of this strain of E. coli yielded P8/1-OG, an N-acetyl P8/1-OG analog, and AHBA. In addition to providing a fundamentally new route to shikimate and ansamycin-type compounds, this result enables further genetic manipulation of AHBA-derived polyketide natural products with unprecedented power.
Figures





Similar articles
-
Production of ansamycin polyketide precursors in Escherichia coli.J Antibiot (Tokyo). 2006 Aug;59(8):464-70. doi: 10.1038/ja.2006.65. J Antibiot (Tokyo). 2006. PMID: 17080682
-
Biosynthesis of the ansamycin antibiotic rifamycin: deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699.Chem Biol. 1998 Feb;5(2):69-79. doi: 10.1016/s1074-5521(98)90141-7. Chem Biol. 1998. PMID: 9512878
-
Mutational analysis and reconstituted expression of the biosynthetic genes involved in the formation of 3-amino-5-hydroxybenzoic acid, the starter unit of rifamycin biosynthesis in amycolatopsis Mediterranei S699.J Biol Chem. 2001 Apr 20;276(16):12546-55. doi: 10.1074/jbc.M009667200. Epub 2001 Jan 18. J Biol Chem. 2001. PMID: 11278540
-
The biosynthesis of 3-amino-5-hydroxybenzoic acid (AHBA), the precursor of mC7N units in ansamycin and mitomycin antibiotics: a review.J Antibiot (Tokyo). 2011 Jan;64(1):35-44. doi: 10.1038/ja.2010.139. Epub 2010 Nov 17. J Antibiot (Tokyo). 2011. PMID: 21081954 Review.
-
Biosynthesis of 3,5-AHBA-derived natural products.Nat Prod Rep. 2012 Feb;29(2):243-63. doi: 10.1039/c2np00019a. Epub 2011 Dec 22. Nat Prod Rep. 2012. PMID: 22193711 Review.
Cited by
-
Evidence for apparent gene instability in the rifamycin-producing oligoketide synthase. Implications for combinatorial biosynthesis and heterologous gene expression.Folia Microbiol (Praha). 2005;50(6):483-6. doi: 10.1007/BF02931434. Folia Microbiol (Praha). 2005. PMID: 16681144
-
The aminoshikimic acid pathway in bacteria as source of precursors for the synthesis of antibacterial and antiviral compounds.J Ind Microbiol Biotechnol. 2021 Dec 23;48(9-10):kuab053. doi: 10.1093/jimb/kuab053. J Ind Microbiol Biotechnol. 2021. PMID: 34374768 Free PMC article. Review.
-
New antibiotics--resistance is futile.PLoS Biol. 2004 Feb;2(2):E53. doi: 10.1371/journal.pbio.0020053. Epub 2004 Feb 17. PLoS Biol. 2004. PMID: 14966545 Free PMC article.
-
The violacein biosynthetic enzyme VioE shares a fold with lipoprotein transporter proteins.J Biol Chem. 2008 Mar 7;283(10):6467-75. doi: 10.1074/jbc.M708573200. Epub 2008 Jan 2. J Biol Chem. 2008. PMID: 18171675 Free PMC article.
-
Improved AP-3 production through combined ARTP mutagenesis, fermentation optimization, and subsequent genome shuffling.Biotechnol Lett. 2021 Jun;43(6):1143-1154. doi: 10.1007/s10529-020-03034-5. Epub 2021 Mar 22. Biotechnol Lett. 2021. PMID: 33751317
References
-
- Anderson, M. G., Kibby, J. J., Rickards, R. W. & Rothchild, J. M. (1980) J. Chem. Soc. Chem. Commun., 1277–1278.
-
- Ghisalba, O. & Nuesch, J. (1981) J. Antibiot. 34, 64–71. - PubMed
-
- Becker, A. M., Herlt, A. J., Hilton, G. L., Kibby, J. J. & Rickards, R. W. (1983) J. Antibiot. 36, 1323–1328. - PubMed
-
- Traxler, P. & Ghisalba, O. (1982) J. Antibiot. 35, 1361–1366. - PubMed
-
- Higashide, E., Asai, M., Ootsu, K., Tanida, S., Kozai, Y., Hasegawa, T., Kishi, T., Sugino, Y. & Yoneda, M. (1977) Nature 270, 721–722. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous