Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2003;26(2-3):147-69.
doi: 10.1023/a:1024481016187.

Carnitine transport: pathophysiology and metabolism of known molecular defects

Affiliations
Review

Carnitine transport: pathophysiology and metabolism of known molecular defects

I Tein. J Inherit Metab Dis. 2003.

Abstract

Early-onset dilatative and/or hypertrophic cardiomyopathy with episodic hypoglycaemic coma and very low serum and tissue concentrations of carnitine should alert the clinician to the probability of the plasmalemmal high-affinity carnitine transporter defect. The diagnosis can be established by demonstration of impaired carnitine uptake in cultured skin fibroblasts or lymphoblasts and confirmed by mutation analysis of the human OCTN2 gene in the affected child and obligate heterozygote parents. The institution of high-dose oral carnitine supplementation reverses the pathology in this otherwise lethal autosomal recessive disease of childhood, and carnitine therapy from birth in prospectively screened siblings may altogether prevent the development of the clinical phenotype. Heterozygotes may be at risk for cardiomyopathy in later adult life, particularly in the presence of additional risk factors such as hypertension and competitive pharmacological agents. OCTN2 belongs to a family of organic cation/carnitine transporters that function primarily in the elimination of cationic drugs and other xenobiotics in kidney, intestine, liver and placenta. The high- and low-affinity human carnitine transporters, OCTN2 and OCTN1, are multifunctional polyspecific organic cation transporters; therefore, defects in these transporters may have widespread implications for the absorption and/or elimination of a number of key pharmacological agents such as cephalosporins, verapamil, quinidine and valproic acid. A third organic/cation carnitine transporter with high specificity for carnitine, Octn3, has been cloned in mice. The juvenile visceral steatosis (jvs) mouse serves as an excellent clinical, biochemical and molecular model for the high-affinity carnitine transporter OCTN2 defect and is due to a spontaneous point mutation in the murine Octn2 gene on mouse chromosome 11, which is syntenic to the human locus at 5q31 that harbours the human OCTN2 gene.

PubMed Disclaimer

References

    1. J Nutr. 1991 Apr;121(4):539-46 - PubMed
    1. Neurology. 1987 Mar;37(3):379-85 - PubMed
    1. Mol Genet Metab. 2002 Nov;77(3):195-201 - PubMed
    1. Am J Hum Genet. 1998 Jul;63(1):101-8 - PubMed
    1. Hum Mutat. 2000 Jan;15(1):118 - PubMed

Publication types

LinkOut - more resources