Cell surface expression of C1qRP/CD93 is stabilized by O-glycosylation
- PMID: 12891708
- DOI: 10.1002/jcp.10332
Cell surface expression of C1qRP/CD93 is stabilized by O-glycosylation
Abstract
C1qRP/CD93 is a cell surface receptor predominantly expressed on monocytes, neutrophils, endothelial cells, and early stem cell precursors. In phagocytic cells, it has been characterized as contributing to the enhancement of FcR- and CR1-induced phagocytosis triggered by innate immune system defense collagens such as C1q and mannose binding lectin (MBL). Previously, we demonstrated a high level of glycosylation on C1qRP/CD93 that was predominantly O-linked. In this study, we investigate the role of glycosylation in C1qRP/CD93 stability first by inhibiting O-glycosylation by addition of benzyl 2-acetamido-2-deoxy-alpha-D-galactopyranoside (BAG) to the human histiocytic cell line U937, and secondly, by expression of C1qRP/CD93 in the CHO-derived cell line ldlD which has a reversible defect in protein glycosylation. In both U937 cells and in ldlD cells transfected to express C1qRP/CD93, glycosylation deficiency caused cell surface expression levels of C1qRP/CD93 to decrease, concomitant with the detection of C1qRP/CD93 reactivity in the culture media. Metabolic labeling studies show that when glycosylation is absent, C1qRP/CD93 is synthesized and rapidly released into the culture supernatant or degraded. These studies demonstrate that O-glycosylation is important in the stable cell surface expression of C1qRP/CD93 .
Copyright 2003 Wiley-Liss, Inc.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
