Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Apr;326(4):401-12.
doi: 10.1016/s1631-0691(03)00119-7.

[Reversibility of the effects of cadmium on the growth and nitrogen metabolism in the tomato(Lycopersicon esculentum)]

[Article in French]
Affiliations
Free article

[Reversibility of the effects of cadmium on the growth and nitrogen metabolism in the tomato(Lycopersicon esculentum)]

[Article in French]
Chiraz Chaffei et al. C R Biol. 2003 Apr.
Free article

Abstract

In order to better understand the effects of heavy metals on the growth of plants, we decided to perform recovering experiments by following both chemical and physiological parameters in cadmium pre-stressed tomato seedlings after cadmium had been removed from the nutrient solution. The work shows that cadmium suppression results in resumption of growth activity. The biomass of leaves and stems rose steadily. The increase in root biomass exceeded those of leaves and stems. At the same time, nitrate content was increased to reach the level obtained with unstressed controls. In all the organs studied, the activities of the enzymes involved in the anabolic nitrogen primary assimilation pathways (nitrate reductase (NR), nitrite reductase (NiR) and glutamine synthetase (GS) soared after that cadmium had been removed. While NAD(+)-dependent glutamate dehydrogenase (GDH-NAD+) activity also rose progressively during the recovering time, the cognate NADH-dependent glutamate dehydrogenase (GDH-NADH) activity decreased. This result allows us to propose that the ammonia produced by the stress-induced protein catabolism is detoxified and re-assimilated by the GDH-NADH isoenzyme. On the basis of these results, we will discuss the ability of the plant to dilute the effects of pollutants during the recovering period. An important outcome of this work is that a transient contamination of the culture medium by pollutants is not necessarily followed by a significant depreciation in product yield or quality.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources