[Reversibility of the effects of cadmium on the growth and nitrogen metabolism in the tomato(Lycopersicon esculentum)]
- PMID: 12892045
- DOI: 10.1016/s1631-0691(03)00119-7
[Reversibility of the effects of cadmium on the growth and nitrogen metabolism in the tomato(Lycopersicon esculentum)]
Abstract
In order to better understand the effects of heavy metals on the growth of plants, we decided to perform recovering experiments by following both chemical and physiological parameters in cadmium pre-stressed tomato seedlings after cadmium had been removed from the nutrient solution. The work shows that cadmium suppression results in resumption of growth activity. The biomass of leaves and stems rose steadily. The increase in root biomass exceeded those of leaves and stems. At the same time, nitrate content was increased to reach the level obtained with unstressed controls. In all the organs studied, the activities of the enzymes involved in the anabolic nitrogen primary assimilation pathways (nitrate reductase (NR), nitrite reductase (NiR) and glutamine synthetase (GS) soared after that cadmium had been removed. While NAD(+)-dependent glutamate dehydrogenase (GDH-NAD+) activity also rose progressively during the recovering time, the cognate NADH-dependent glutamate dehydrogenase (GDH-NADH) activity decreased. This result allows us to propose that the ammonia produced by the stress-induced protein catabolism is detoxified and re-assimilated by the GDH-NADH isoenzyme. On the basis of these results, we will discuss the ability of the plant to dilute the effects of pollutants during the recovering period. An important outcome of this work is that a transient contamination of the culture medium by pollutants is not necessarily followed by a significant depreciation in product yield or quality.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
