Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;134(7):853-8.
doi: 10.14219/jada.archive.2003.0283.

Isolation of an unusual fungus in treated dental unit waterlines

Affiliations

Isolation of an unusual fungus in treated dental unit waterlines

Nuala B Porteous et al. J Am Dent Assoc. 2003 Jul.

Abstract

Background: Numerous organisms have been identified in dental unit waterlines, or DUWLs. Decontamination of DUWLs focuses on maintaining heterotrophic, mesophilic bacteria below 200 colony-forming units per milliliter as recommended by the ADA.

Methods: The authors conducted a study to test the efficacy of a continuous-use, stabilized chlorine dioxide proprietary compound to decrease the number of bacteria in DUWLs. The authors used three dental units with self-contained water systems to test the product and three similar units as controls. They aseptically collected water samples weekly according to recommended methods, plated the samples on R2A agar and incubated them for seven days.

Results: The authors isolated heterotrophic, mesophilic bacteria from treatment and control units for eight weeks. In the ninth week, the predominant isolates from one of the treatment units changed in appearance to small, dark, shiny colonies that the authors tentatively identified as fungal. The authors then isolated similar colonies from the source tap water and ultrasonic and handpiece lines. They added three additional dental units from the same clinic in the sixth week of the study and isolated similar fungal colonies from them after five weeks of treatment. The authors performed DNA sequencing with an automated sequencer and identified the organism Exophiala mesophila.

Conclusions: The authors did not observe fungal isolates in the control units, which suggests that continuous waterline treatment may cause proliferation of a fungus present in small amounts in source water. CLINICAL IMPLICATIONS. The findings of this study indicate the need to monitor water quality regularly when treating waterlines with continuous-use chemical cleaners.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources